Abstract:
A meltblowing method and system for dispensing first and second fluids from corresponding first and second orifices of a die assembly to form a meltblown first fluid filament. The die assembly directs the first and second fluid flows parallelly, or divergently, or directs two second fluid flows convergently toward a common first fluid flow, whereby the first and second fluids are dispensed from orifices at equal first fluid flow rates and equal second fluid flow rates. The die assembly is compressably retained between opposing end plates coupled to an adapter for further coupling to a main manifold having a fluid metering device for supplying first fluid to the die assembly. The meltblown filaments are depositing onto a moving substrate by vacillating the filament non-parallel to a direction of substrate movement, whereby vacillation a first fluid flow is controllable by an angle between the first fluid flow and one or more flanking second fluid flows, among other variables.
Abstract:
A method for producing visco-elastic fluidic material flows by drawing a visco-elastic fluidic material with corresponding separate second fluid flows associated therewith to form a visco-elastic fiber vacillating in a repeating, generally omega-shaped pattern having a bowed portion with first and second side portions that first converge toward each other and then diverge outwardly in generally opposing directions. In one operation, the visco-elastic fiber vacillating in the repeating, generally omega-shaped pattern is an adhesive material deposited onto woven and non-woven fabric substrates and stretched elongated elastic strands in the manufacture of a variety of bodily fluid absorbing hygienic articles.
Abstract:
A method for applying fluids to a strand and useable for bonding adhesive coated strands to substrates in the production of bodily fluid absorbing hygienic articles, by drawing the strand along an isolated path, moving a fluid or adhesive fiber back and forth across a path of the strand as the fluid fiber is dispensed toward the strand, and capturing substantially all of the fluid fiber on the isolated strand, and in some applications contacting an adhesive coated strand with the substrate to bond the strand thereto. The adhesive fiber is vacillated back and forth across a path of the strand beyond opposing sides thereof to at least partially coat all sides thereof with adhesive. In bodily fluid absorbing hygienic articles, the methods substantially eliminate fabric stiffening and loss of moisture absorbing capacity thereof, provide substantially uniformly bonding along the axial dimension of the strand to ensure uniform bunching of fabrics, optimum fluid absorption, and comfort.
Abstract:
In a combustion-powered, fastener-driving tool with a combustion chamber, a piston chamber communicating with the combustion chamber, a driving piston movable within the piston chamber between an initial position and a terminal position, and a driving blade mounted to the driving piston so as to be conjointly movable with the driving piston, the driving piston, the driving blade, and the piston chamber are arranged so that combustion in the combustion chamber imparts energy to the driving piston and the driving blade so as to drive the driving piston and the driving blade from the initial position toward the terminal position with the driving blade preceding the driving piston, over a stroke having a length sufficient to enable the driving blade to transfer more than eight tenths of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position. The piston chamber has an inner, cylindrical wall. The driving piston has an annular portion with an annular groove seating a piston ring or has two axially spaced, annular portions, at least one of which has an annular groove seating a piston ring engaging the inner, cylindrical wall. The driving piston, the driving blade, and the piston chamber are arranged so that the driving piston and the driving blade are guided solely within the axial length of the driving piston, over at least substantially all of the stroke.
Abstract:
A piston velocity control and stability control system is provided for a combustion powered tool having a self contained combustion engine. The system includes a ring that may be adjusted relative to exit ports in a cylinder of the combustion engine. The ring includes openings which may be incrementally aligned between a completely exposed, and a substantially closed position relative to the exit ports. Displaced air volume within the cylinder exits through the exit ports as a piston advances down the cylinder, and the velocity of the piston will be greatest when the exit ports are completely exposed. User initiated reduction of the effective size of the exit ports by adjustment of the ring will reduce piston velocity as described per application. A nosepiece used to guide the driver blade and position the blade over a fastener is isolated from the cylinder so that the nosepiece remains stable relative to the workpiece upon combustion and until the driver blade strikes the fastener.
Abstract:
In a combustion-powered, fastener-driving tool with a combustion chamber, a piston chamber communicating with the combustion chamber, a driving piston movable within the piston chamber between an initial position and a terminal position, and a driving blade mounted to the driving piston so as to be conjointly movable with the driving piston, the driving piston, the driving blade, and the piston chamber are arranged so that combustion in the combustion chamber imparts energy to the driving piston and the driving blade so as to drive the driving piston and the driving blade from the initial position toward the terminal position with the driving blade preceding the driving piston, over a stroke having a length sufficient to enable the driving blade to transfer more than eight tenths of the maximum, transferable energy to a fastener engaged by the driving blade as the driving piston and the driving blade approach the terminal position. The piston chamber has an inner, cylindrical wall. The driving piston has an annular portion with an annular groove seating a piston ring or has two axially spaced, annular portions, at least one of which has an annular groove seating a piston ring engaging the inner, cylindrical wall. The driving piston, the driving blade, and the piston chamber are arranged so that the driving piston and the driving blade are guided solely within the axial length of the driving piston, over at least substantially all of the stroke.
Abstract:
A piston velocity control and stability control system is provided for a combustion powered tool having a self contained combustion engine. The system includes a ring that may be adjusted relative to exit ports in a cylinder of the combustion engine. The ring includes openings which may be incrementally aligned between a completely exposed, and a substantially closed position relative to the exit ports. Displaced air volume within the cylinder exits through the exit ports as a piston advances down the cylinder, and the velocity of the piston will be greatest when the exit ports are completely exposed. User initiated reduction of the effective size of the exit ports by adjustment of the ring will reduce piston velocity as described per application. A nosepiece used to guide the driver blade and position the blade over a fastener is isolated from the cylinder so that the nosepiece remains stable relative to the workpiece upon combustion and until the driver blade strikes the fastener.
Abstract:
A rotary atomizing applicator includes a shaping air system having first orifices discharging air against the outer surface of the bell cup, with the air following the bell cup and being released from the bell cup at the forward edge of the bell cup. A terminal portion of the outer surface of the bell cup directs the flow of air to shape the pattern of coating released from the bell cup. A second pattern of air is directed from outwardly and behind the bell cup inwardly toward the forward edge of the bell cup.
Abstract:
A system, in certain embodiments, includes a nozzle. The nozzle includes a liquid passage, a first pneumatic passage, and an exit surface. The exit surface includes at least one recirculation inducing feature configured to reduce deposits adjacent to the first pneumatic passage.
Abstract:
A headlamp adjuster includes an output shaft driven by a co-rotatable gear. Threads on the shaft engage splines in a thin wall boss, the splines having limited circumferential engagement with the screw. The thin wall boss deflects outwardly in response to forces that build in the engagement of the shaft and splines, to release driving engagement between the splines and the shaft.