Abstract:
Intermediate removable placement and processing structures are provided to enable the formation of optical elements upon light emitting elements, including the formation of a reflective layer beneath the optical elements. These removable placement and processing structures are substantially independent of the particular dimensions of the produced light emitting device, allowing their re-use in a variety of applications. The resultant light emitting device includes the light emitting element,the optical element with reflector, and, optionally, a wavelength conversion material, but does not include remnants of the placement and processing structures, such as a carrier substrate.
Abstract:
A method for fabricating an LED/phosphor structure is described where an array of blue light emitting diode (LED) dies are mounted on a submount wafer. A phosphor powder is mixed with an organic polymer binder, such as an acrylate or nitrocellulose. The liquid or paste mixture is then deposited over the LED dies or other substrate as a substantially uniform layer. The organic binder is then removed by being burned away in air, or being subject to an O2 plasma process, or dissolved, leaving a porous layer of phosphor grains sintered together. The porous phosphor layer is impregnated with a sol-gel (e.g., a sol-gel of TEOS or MTMS) or liquid glass (e.g., sodium silicate or potassium silicate), also known as water glass, which saturates the porous structure. The structure is then heated to cure the inorganic glass binder, leaving a robust glass binder that resists yellowing, among other desirable properties.
Abstract:
In one embodiment, a solid cylindrical tablet is pre-formed for a reflective cup containing an LED die, such as a blue LED die. The tablet comprises uniformly-mixed phosphor particles and transparent/translucent particles of a high TC material, such as quartz, in a hardened silicone binder, where the index of refraction of the high TC material is matched to that of the silicone to minimize internal reflection. Tablets can be made virtually identical in composition and size. The bulk of the tablet will be the high TC material. After the tablet is placed in the cup, the LED module is heated, preferably in a vacuum, to melt the silicone so that the mixture flows around the LED die and fills the voids to encapsulate the LED die. The silicone is then cooled to harden.
Abstract:
The invention provides a lighting unit comprising a light source and a light conversion layer, wherein the light source is configured to provide light source light and comprises a light emitting diode (LED), wherein the light conversion layer comprises an alkali silicate matrix containing a particulate luminescent material, and wherein the light conversion layer is configured to convert at least part of the light source light into luminescent material light.
Abstract:
A flexible film comprising a wavelength converting material is positioned over a light source. The flexible film is conformed to a predetermined shape. In some embodiments, the light source is a light emitting diode mounted on a support substrate. The diode is aligned with an indentation in a mold such that the flexible film is disposed between the support substrate and the mold. Transparent molding material is disposed between the support substrate and the mold. The support substrate and the mold are pressed together to cause the molding material to fill the indentation. The flexible film conforms to the shape of the light source or the mold.
Abstract:
A flexible film comprising a wavelength converting material is positioned over a light source. The flexible film is conformed to a predetermined shape. In some embodiments, the light source is a light emitting diode mounted on a support substrate. The diode is aligned with an indentation in a mold such that the flexible film is disposed between the support substrate and the mold. Transparent molding material is disposed between the support substrate and the mold. The support substrate and the mold are pressed together to cause the molding material to fill the indentation. The flexible film conforms to the shape of the light source or the mold.
Abstract:
Embodiments of the invention include a plurality of light emitting devices (1), one of the light emitting devices in the plurality being configured to emit light having a first peak wavelength. A wavelength converting layer (30) is disposed in a path of light emitted by the plurality of light emitting devices. The wavelength converting layer (30) absorbs light emitted by the light emitting device and emits light having a second peak wavelength. The light emitting devices (1) are mechanically connected to each other only through the wavelength converting layer (30). In other embodiments a light converting layer is placed over the light emitting devices and an adhesive or optical element layer is placed at the side surfaces and over the light converting layer, the light emitting devices are mechanically connected to each other only through the wavelength converting layer.
Abstract:
A ceramic green wavelength conversion element (120) is coated with a red wavelength conversion material (330) and placed above a blue light emitting element (110) such that the ceramic element (120) is attached to the light emitting element (110), thereby providing an efficient thermal coupling from the red and green converters (330, 120) to the light emitting element (110) and its associated heat sink. To protect the red converter coating (330) from the effects of subsequent processes, a sacrificial clear coating (340) is created above the red converter element (330). This clear coating (340) may be provided as a discrete layer of clear material, or it may be produced by allowing the red converters to settle to the bottom of its suspension material, thereby forming a converter-free upper layer that can be subjected to the subsequent fabrication processes.