Abstract:
According to one embodiment, a magnetic recording and reproducing device includes a magnetic recording medium including a plurality of recording tracks, a magnetic head, and a controller. The plurality of recording tracks includes a first track. The controller causes the magnetic head to implement a first recording operation of recording first information in at least two of a plurality of first track recording components included in the first track. The controller causes the magnetic head to implement a first reproduction operation of reproducing the first information from a first information reproducing/recording component of one of the at least two of the plurality of first track recording components.
Abstract:
According to one embodiment, a magnetic recording and reproducing device includes a magnetic recording medium, a recording unit and a reproducing unit. The magnetic recording medium includes a first track and a second track, the first track extending in a first direction, the second track extending in the first direction and being arranged with the first track in a second direction intersecting the first direction. The first track includes first and second sub-tracks extending in the first direction. The second track includes third and fourth sub-tracks extending in the first direction. The second sub-track is disposed between the first and fourth sub-tracks. The third sub-track is disposed between the second and fourth sub-tracks. The recording unit records information in the first and second tracks. The reproducing unit reproduces first information recorded in the first track. The reproducing unit reproduces second information recorded in the second track.
Abstract:
According to one embodiment, a magnetic recording head includes an air bearing surface, a magnetic pole having a distal end portion, a write shield opposed to the distal end portion of the magnetic pole across a write gap, and a high-frequency oscillator between the magnetic pole and the write shield in the write gap. The high-frequency oscillator includes a spin injection layer, an intermediate layer and an oscillation layer which are stacked in a head travel direction. A film thickness of the spin injection layer in the head travel direction at a height position away from the air bearing surface is greater than a film thickness of the spin injection layer in the head travel direction on the air bearing surface.
Abstract:
According to one embodiment, a magnetic recording head records information in a magnetic recording medium by shingled magnetic recording. The magnetic recording head includes a magnetic pole and a shield opposing the magnetic pole. The magnetic pole has a shield-opposing surface opposing the shield. The shield-opposing surface includes a first portion and a second portion. A position of the second portion in a track width direction is different from a position of the first portion in the track width direction, the track width direction intersecting a first direction from the magnetic pole toward the shield. The first portion records the information in the magnetic recording medium after the second portion in the shingled magnetic recording. A first distance between the first portion and the shield is shorter than a second distance between the second portion and the shield. The shield-opposing surface is tilted with respect to the first direction.
Abstract:
A magnetic recording head includes a main magnetic pole that applies a recording magnetic field to a recording layer of a recording medium, a write shield that faces the main magnetic pole with a write gap therebetween, a recording coil that generates a magnetic field in the main magnetic pole, a high-frequency oscillator that includes a field generation layer and a spin injection layer, and is disposed within the write gap between the main magnetic pole and the write shield, a wiring electrically connected to the high-frequency oscillator, a modulation electrode that applies a modulation voltage to the field generation layer, and a modulation insulating layer that is interposed between the field generation layer and the modulation electrode.
Abstract:
An example magnetic recording apparatus includes a magnetic recording medium and a magnetic recording head. The magnetic recording head includes a first magnetic pole to apply a recording magnetic field to a magnetic recording medium, a spin torque oscillator provided parallel to the first magnetic pole, a first coil which surrounds the first magnetic pole, to magnetize the first magnetic pole, and a second coil to pass a current independently of the first coil and magnetize the first magnetic pole. A signal processor writes and reads a signal on the magnetic recording medium by using the magnetic recording head.
Abstract:
According to one embodiment, a disk storage apparatus includes a magnetic head and a controller. The controller determines at regular intervals whether a recording density of a write signal belongs to a low-density region or a high-density region with reference to a reference density. In addition, the controller relatively reduces a current to energize a high-frequency-assisted element at a timing of the low-density region to be less than a current of the high-density region, in accordance with the low-density region or the high-density region in recording the data.
Abstract:
According to one embodiment, a magnetic recording head includes a disk-facing surface configured to face a recording layer of a recording medium, a main magnetic pole includes a distal end located on the disk-facing surface and configured to apply a recording magnetic field to the recording layer of the recording medium, a leading shield on a leading side of the main magnetic pole, opposed to the distal end of the main magnetic pole across a gap, a high-frequency oscillator between the leading shield and the distal end of the main magnetic pole, and a recording coil configured to excite the main magnetic pole with a magnetic field.
Abstract:
According to one embodiment, an information processing device includes an acquisition part, and a processor. The acquisition part is configured to acquire a reproduction signal obtained from a recording part. The recording part includes a recording medium. The reproduction signal includes a first signal corresponding to information recorded in the recording medium. The processor is configured to derive a first output and a second output. The first output is obtained by first information being processed by a first processing model. The first information includes the first signal. The second output is obtained by the first information being processed by a second processing model. The processor is configured to output a result of processing the first information based on a third output. The third output is obtained based on the first output, the second output, and the first information.
Abstract:
A magnetic head includes a first magnetic pole, a second magnetic pole, a magnetic element, and a magnetic member. The magnetic element is provided between the first and second magnetic poles, and includes a first magnetic layer. The magnetic member includes a first magnetic part. A second direction from the first magnetic part to the magnetic element crosses a first direction from the first to second magnetic pole. The first magnetic part includes a magnetic material including at least one of first to third materials. The first material includes at least one selected from the group consisting of Mn3Sn, Mn3Ge and Mn3Ga. The second material includes at least one selected from the group consisting of a cubic or tetragonal compound including Mn and Ni, a cubic alloy including γ-phase Mn, and a cubic alloy including Fe. The third material includes an antiferromagnet.