Abstract:
Data is to be detected in a wireless communication system. A plurality of communication signals are received. A solution for estimating data of the received communication signals is modeled using a linear system requiring a matrix inversion. Columns or rows of an approximate Cholesky factor are determined. A difference between the determined columns or rows is determined. If the determined difference is less than a threshold, subsequent columns or rows are determined by previously determined columns or rows. The data of the received communication signals is estimated using the approximate Cholesky factor.
Abstract:
A code indexing system for a CDMA communication station that uses orthogonal variable spreading factor (OVSF) codes has a single number mapped to each code. The new code number itself not only provides the code signature, but it is also used for the OVSF code generation. In addition, the system provides easy and fast generation of the available code list without the help of look-up table. This capability improves the dynamic code assignment.
Abstract:
An insertion sorter circuit and method are provided which are particularly useful for sorting channel response values of a communication signal. The sorter circuit includes a series of sorter elements which each have a register. The circuit is configured to cascade values downwardly when one register receives a greater value than it has stored, which value is not greater than the value stored in any upstream register. At the end of processing the values, the most significant values are stored in the registers, the sum of which are the channel power estimate. The channel noise variance is obtainable by applying a system dependent scaling factor to the sum of the least significant values processed.
Abstract:
The present invention is a method and system for receiving data transmitted using block space time transmit diversity (BSTTD) in a code division multiple access (CDMA) communication system. The system comprises a transmitter, for transmitting a first data field using a first antenna and a second data field using a second antenna, and a receiver. The receiver includes an antenna for receiving the first and second transmitted data fields, and a BSTTD joint detector which determines symbols of the first and second transmitted data fields using a minimum mean square error block linear equalizer model and an approximated Cholesky decomposition of the model.
Abstract:
The present invention is a method and apparatus for a user equipment (UE) to transmit a data field of symbols. A first data field of symbols is generated and encoded d to produce a second data field having complex conjugates of the symbols of the data field. The first and second data fields are then spread, wherein the first data field is spread using a first channelization code and the second data field is spread using a second channelization code. Each of the channelization codes are uniquely associated with one of a first and second antenna. An RF signal including the first and second spread data fields is then transmitted over a first and second antenna.