Abstract:
A magnetic integration double-ended converter with an integrated function of a transformer and an inductor includes an integrated magnetic member having a magnetic core with three magnetic columns having at least three windings (NP, NS1, NS2) and at least one energy storage air gap, where a primary winding (NP) and a first secondary winding (NS1) are both wound around a first magnetic column or are both wound around a second magnetic column and a third magnetic column, and a second secondary winding (NS2) is wound around the second magnetic column; an inverter circuit with double ends symmetrically working, acting on the primary winding (NP); and a group of synchronous rectifiers (SR1, SR2), gate electrode driving signals of which and gate electrode driving signals of a group of power switch diodes (S1, S2) of the inverter circuit with the double ends symmetrically working complement each other.
Abstract:
A golden finger and a board edge interconnecting device are disclosed. The golden finger includes a printed circuit board (PCB) surface layer and at least one PCB inner layer, where a metal foil of the PCB inner layer is connected to a metal foil of the PCB surface layer through a current-carrying structure, so that a current-carrying channel of the golden finger passes through the PCB surface layer and the PCB inner layer. The board edge interconnecting device includes the foregoing golden finger. In the embodiments, a current-carrying capacity of a PCB in the golden finger is increased without increasing a size and thickness of a copper foil of the PCB in the golden finger, thereby effectively improving the current-carrying capacity of the PCB in the golden finger.
Abstract:
A coil module includes a first planar coil winding and a second planar coil winding. A first coil of the first planar coil winding includes a first outer side part and a first inner side part. A first coil of the second planar coil winding includes a second outer side part and a second inner side part. An end part of the first outer side part is connected to an end part of the second inner side part, and an end part of the second outer side part is connected to an end part of the first inner side part.
Abstract:
This application describes a coil. The coil includes an output terminal, an input terminal, and a wire-winding part that is connected between the output terminal and the input terminal. A slot is disposed on at least a part of the wire-winding part, and a depth of the slot in any direction of a cross section of the wire-winding part is less than or equal to a distance between two points that are the farthest away from each other on the cross section of the wire-winding part. The wire-winding part is a metal conductor made through spiral winding. The input terminal and the output terminal are configured to connect the wire-winding part to an external circuit.
Abstract:
This application discloses a coil module, which includes: an insulation layer, a first planar coil winding, and a second planar coil winding, one turn of coil of the first planar coil winding includes a first portion, a second portion, and a first connection part, and one turn of coil of the second planar coil winding includes a third portion, a fourth portion, and a second connection part. The first connection portion connects an outer side part of the first portion and an inner side part of the second portion, the second connection portion connects an inner side part of the third portion and an outer side part of the fourth portion, and there is an overlap between a projection of the first connection portion on a plane of the insulation layer and a projection of the second connection portion on the plane of the insulation layer.
Abstract:
A wireless charging system includes a transmitter and a receiver, the transmitter includes a transmitter coil and a first series matching capacitor, the transmitter coil is connected to the first series matching capacitor in series to form a first oscillation circuit, and the first oscillation circuit is configured to transfer power to the receiver, and the receiver includes a receiver coil and a second series matching capacitor, the receiver coil is connected to the second series matching capacitor in series to form a second oscillation circuit, and the second oscillation circuit is configured to receive the power transferred by the first oscillation circuit.
Abstract:
A thin film inductor includes a first magnetic thin film and a second magnetic thin film that are adjacent, the first magnetic thin film is nested in the second magnetic thin film, and a relative magnetic permeability of the first magnetic thin film is less than a relative magnetic permeability of the second magnetic thin film, and a difference between the relative magnetic permeability of the first magnetic thin film and the relative magnetic permeability of the second magnetic thin film is greater than or equal to a first threshold, where when a magnetic induction intensity of the second magnetic thin film reaches a saturated magnetic induction intensity of the second magnetic thin film, a magnetic induction intensity of the first magnetic thin film is less than or equal to a saturated magnetic induction intensity of the first magnetic thin film.
Abstract:
A golden finger and a board edge interconnecting device are disclosed. The golden finger includes a printed circuit board (PCB) surface layer and at least one PCB inner layer, where a metal foil of the PCB inner layer is connected to a metal foil of the PCB surface layer through a current-carrying structure, so that a current-carrying channel of the golden finger passes through the PCB surface layer and the PCB inner layer. The board edge interconnecting device includes the foregoing golden finger. In the embodiments, a current-carrying capacity of a PCB in the golden finger is increased without increasing a size and thickness of a copper foil of the PCB in the golden finger, thereby effectively improving the current-carrying capacity of the PCB in the golden finger.
Abstract:
The present invention discloses a circuit board, including a substrate and a magnetic core, where the magnetic core is embedded into the substrate, at least one turn of a winding conductor wound around the magnetic core is arranged on the substrate, each turn of the winding conductor includes a first end-surface conductor and a second end-surface conductor that are separately arranged on two ends of the magnetic core, and each turn of the winding conductor further includes a first side-surface conductor that penetrates through the magnetic core from an inner side of the magnetic core and a second side-surface conductor that penetrates through the magnetic core from an outer side of the magnetic core. The circuit board and the power conversion apparatus having the circuit board provided by the present invention, achieve larger inductance, save materials, and reduce cost for fabricating a power conversion apparatus.
Abstract:
The present invention provides a voltage conversion device and a method for adjusting common mode noise impedance, which relates to the circuit field, and enables a common mode impedance value of a noise source and an impedance value of an EMI filter to enter a mismatch state, so as to reduce a restriction on design of the EMI filter, so that a size of the EMI filter is smaller and utilization efficiency of the EMI filter is higher. The method is: adjusting a common mode impedance value of a noise source by adjusting a balanced impedance value in a balanced winding on a voltage conversion device, so as to enable the common mode impedance value of the noise source and an impedance value of an EMI filter to enter a mismatch state.