Abstract:
Embodiments are provided to enable downlink open-loop multi-user coordinated multipoint (MU-CoMP) transmission using sparse code multiple access (SCMA). In an embodiment, a network controller selects, in a cluster of multiple transmission points (TPs) and multiple user equipment (UEs), a MU-CoMP with SCMA transmission mode and a UE paring scheme for data transmission from a set of TPs to a set of UEs. The controller schedules the set of UEs for data transmission from the set of TPs, including coordinating and allocating, for each TP in the set of TPs, a plurality of SCMA layers to the UEs in accordance with the selected MU CoMP with SCMA transmission mode. The controller also determines values for control signaling based on the scheduling. The control signaling configures the set of UEs to detect the data transmission from the TPs.
Abstract:
Longer pilot sequences can be supported by transmitting pilot values of a given pilot sequence over different orthogonal frequency division multiplexed (OFDM) symbols of an uplink frame. The pilot values may be contiguous, or non-contiguous, with one another in the time domain. Consecutive pilot values in a pilot sequence may be transmitted in different OFDM symbols of the frame. For example, odd pilot values (e.g., P1, P3, P5 . . . ) in a pilot sequence may be transmitted over a different OFDM symbol than even pilot values (e.g., P2, P4, P6 . . . ) in the pilot sequence. Alternatively, a leading subset of pilot values in a pilot sequence is transmitted over a different OFDM symbol than a trailing subset of pilot values in the pilot sequence.
Abstract:
A method for data transmission by a device in a communication system includes modulating a first data stream using a codebook to produce a second data stream, wherein the codebook is in correspondence with a multi-dimensional modulation map that includes a number of distinct projections per complex dimension that is smaller than a number of modulation points of the multi-dimensional modulation map, and transmitting the second data stream over allocated resources in the communication system.
Abstract:
Methods and apparatuses are provided to select coefficients for modeling a system. Data collected from the system is used to generate a data matrix. An upper triangular matrix can be generated in accordance with the data matrix, and the upper triangular matrix can be pruned to remove selected rows and columns from the upper triangular matrix, thereby generating a pruned data matrix. A coefficient vector can be generated in accordance with the pruned data matrix. Various alternative methods of selecting coefficients for modeling the system, as well as apparatus, devices, and systems for performing said methods, are also provided.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
Longer pilot sequences can be supported by transmitting pilot values of a given pilot sequence over different orthogonal frequency division multiplexed (OFDM) symbols of an uplink frame. The pilot values may be contiguous, or non-contiguous, with one another in the time domain. Consecutive pilot values in a pilot sequence may be transmitted in different OFDM symbols of the frame. For example, odd pilot values (e.g., P1, P3, P5 . . . ) in a pilot sequence may be transmitted over a different OFDM symbol than even pilot values (e.g., P2, P4, P6 . . . ) in the pilot sequence. Alternatively, a leading subset of pilot values in a pilot sequence is transmitted over a different OFDM symbol than a trailing subset of pilot values in the pilot sequence.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Abstract:
Systems, methods, and apparatuses for providing waveform adaptation are provided. In an example, a method is provided for identifying a plurality of candidate waveforms, and selecting one of the candidate waveforms for data transmission. The candidate waveforms may be identified in accordance with one or more criteria, such as a transmission capability of the transmitting device, a reception capability of the receiving device, a desired Peak-to-Average-Power-Ratio (PAPR) characteristic, adjacent channel interference (ACI) rejection requirements, spectrum localization requirements, and other criteria. The waveform selected for data transmission may be selected in accordance with one or more waveform selection criteria, such as traffic characteristic, application types, etc.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons; such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.