Abstract:
Embodiments provide a communications device for resource allocation, including: a determining module, configured to acquire, from an S region corresponding to each beam, each beam ID fed back by user equipment, determine each T region including user equipment according to the beam ID, and determine a quantity of user equipments included in each T region; a calculation module, configured to select, according to a preset rule, to-be-connected user equipment from the user equipment included in each T region, and calculate, according to a resource allocation policy, a ratio of resources to be allocated to each to-be-connected user equipment; and an allocation module, configured to allocate, in a preset allocation manner according to the resource ratio, a resource to be allocated to each user equipment to the user equipment, and send PDCCH information to the user equipment to deliver the resource allocated to the user equipment to the user equipment.
Abstract:
A communications device in a high-frequency system, including: a scan module, configured to use a single beam for each space S region in a to-be-scanned sector of a cell to poll or cover all time T regions in the S region in a time-division manner, and send a synchronization sequence to user equipment in the T region by using a preset frame structure; and a determining module, configured to receive a sequence that is fed back by the user equipment, determine a location of the user equipment according to the sequence, and determine, according to the location of the user equipment, a serving beam for a base station to communicate with the user equipment, to confirm that scanning for the user equipment is completed. The embodiments of the present invention further provide a scanning method in a high-frequency system.
Abstract:
The present invention provides a multi-channel array distortion compensation apparatus and method. The apparatus determines, according to a status of a first indication signal, whether to trigger a signal compensation operation; determines, according to a status of a second indication signal, a first adjustment condition is met, compares power of a received signal with a power threshold, and if the power of the received signal is greater than the threshold power, compensates the received signal according to a first adjustment factor; and if the status of the second indication signal does not meet the first adjustment condition, determines the status of the second indication signal meets a second adjustment condition, performs auxiliary compensation according to a second adjustment factor. By compensating signal distortion caused by chip stacking for a received signal, this reduces costs for implementing a multi-channel array system without the need to increase system complexity.
Abstract:
The present invention provides a multi-channel array distortion compensation apparatus and method. The apparatus determines, according to a status of a first indication signal, whether to trigger a signal compensation operation; determines, according to a status of a second indication signal, a first adjustment condition is met, compares power of a received signal with a power threshold, and if the power of the received signal is greater than the threshold power, compensates the received signal according to a first adjustment factor; and if the status of the second indication signal does not meet the first adjustment condition, determines the status of the second indication signal meets a second adjustment condition, performs auxiliary compensation according to a second adjustment factor. By compensating signal distortion caused by chip stacking for a received signal, this reduces costs for implementing a multi-channel array system without the need to increase system complexity.
Abstract:
A wireless communications method and a wireless communications system are disclosed. In an embodiment, the system includes a transmit end including a transmit module having at least two antenna units, the transmit module is configured to transmit M narrow beams with different spatial directions according to a quality of service requirement, and switches a transmit mode according to a preset switching rule, wherein a set of the spatial directions of the M narrow beams forms a transmit mode; a receive end including a receive module having at least two antenna units, the receive module is configured to receive N beams according to the QoS requirement, and a transmission channel is formed, wherein the receive end calculates transmission channel quality in different transmit modes, searches for a transmit mode that meets the QoS requirement, and feeds back the transmit mode to the transmit end.
Abstract:
Embodiments of the present invention disclose a frequency mixing circuit and a method for suppressing local oscillation leakage in the frequency mixing circuit, where a mixed input signal and a local oscillation signal are involved, and local oscillation leakage can be effectively reduced by using a frequency mixing circuit whose structure is simpler and is easier to be implemented. The frequency mixing circuit includes a direct current bias circuit, where the direct current bias circuit includes a direct current bias voltage source used for reducing a local oscillation current. The frequency mixing circuit is mainly applied to frequency mixing, and especially to a case where an intermediate frequency signal is mixed with a local oscillation signal to output a radio frequency signal.