Abstract:
Pyrazole compounds that are modulators of LRRK2, methods of making the compounds, and methods for using the compounds for treatment of diseases associated with LRRK2 receptor, such as Parkinson's disease.
Abstract:
The invention relates to 1,7-diazacarbazole compounds of Formula (I), (I-a) and (I-b) which are useful as kinase inhibitors, more specifically useful as checkpoint kinase 1 (chk1) inhibitors, thus useful as cancer therapeutics. The invention also relates to compositions, more specifically pharmaceutical compositions comprising these compounds and methods of using the same to treat various forms of cancer and hyperproliferative disorders, as well as methods of using the compounds for in vitro, in situ, and in vivo diagnosis or treatment of mammalian cells, or associated pathological conditions.
Abstract:
Compounds having the formula I wherein R1 and R2 are as defined herein are inhibitors of ERK kinase. Also disclosed are compositions and methods for treating hyperproliferative disorders.
Abstract:
Pyrazole compounds that are modulators of LRRK2, methods of making the compounds, and methods for using the compounds for treatment of diseases associated with LRRK2 receptor, such as Parkinson's disease.
Abstract:
Compounds of the formula I: or pharmaceutically acceptable salts thereof, wherein m, n. X, R1, R2, R3, R5, R6 and R7 are as defined herein. Also disclosed are methods of making the compounds and using the compounds for treatment of diseases associated with LRRK2 receptor, such as Parkinson's disease.
Abstract:
The invention relates to compounds of formula I: and pharmaceutically acceptable salts thereof wherein A, X, R1, R4 and n are as defined herein. In addition, the present invention relates to methods of manufacturing and methods of using the compounds of formula I as well as pharmaceutical compositions containing such compounds. The compounds may be useful in treating diseases and conditions mediated by TRPA1, such as pain.
Abstract:
The invention provides novel compounds having the general formula I: wherein R1, RB1, RB2, n, p, q, the A ring and the B ring are as described herein, pharmaceutical compositions including the compounds, and methods of using the compounds.
Abstract:
The invention provides novel compounds having the general formula I: wherein R1, RB1, RB2, n, p, q, the A ring and the B ring are as described herein, pharmaceutical compositions including the compounds, and methods of using the compounds.
Abstract:
The present disclosure relates to bifunctional compounds, which find utility as modulators of SMARCA2 or BRM (target protein). In particular, the present disclosure is directed to bifunctional compounds, which contain on one end a ligand that binds to the Von Hippel-Lindau E3 ubiquitin ligase, and on the other end a moiety which binds the target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of target protein. The present disclosure exhibits a broad range of pharmacological activities associated with degradation/inhibition of target protein. Diseases or disorders that result from aggregation or accumulation of the target protein are treated or prevented with compounds and compositions of the present disclosure.
Abstract:
Oxepan-2-yl pyrazol-4-yl-heterocyclyl-carboxamide compounds of Formula I, including stereoisomers, geometric isomers, tautomers, and pharmaceutically acceptable salts thereof, wherein X is thiazolyl, pyrazinyl, pyridinyl, or pyrimidinyl, are useful for inhibiting Pim kinase, and for treating disorders such as cancer mediated by Pim kinase. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.