Abstract:
A solid state photomultiplier includes at least one microcell configured to generate an initial analog signal when exposed to optical photons. The solid state photomultiplier further includes a quench circuit electrically coupled with the at least one microcell. The quench circuit includes at least one quench resistor configured to exhibit a substantially constant temperature coefficient of resistance over a selected temperature range.
Abstract:
A photon detector having an optical transparent plate and photodiode array interconnected by an optical light guide array. The optical light guide array including elements providing a transmission line between the optical transparent plate and the photodiode array, where the position of one or more optical light guide elements is formed to adjust for a miss-registered photodiode individual element. A method for assembling the photon detector includes depositing a non-wetting film on opposing surfaces of the optical transparent plate and/or photodiode array, altering the deposited non-wetting film in regions of individual photodiode elements, dispensing an optical coupler adhesive on the optical transparent plate and photodiode array to form adhesive beads, aligning the opposing surfaces, assembling the opposing surfaces so that the corresponding optical coupler adhesive beads contact each other, and curing the optical coupler adhesive to form a structurally merged photon detector having optical light guide elements.
Abstract:
In accordance with the present approach, a dark current is measured for one or more detector elements and used to determine a gain or gain compensation for the respective detector elements. In certain embodiments, the dark current is used to determine a temperature for the respective detector element and the temperature is used to determine the gain or gain compensation. In other embodiments, the dark current is used to calculate the gain or gain compensation for the respective detector element without calculating an intermediate temperature value, such as via the use of a transfer function.
Abstract:
Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a photosensor may include a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics. In some embodiments, a solid state photomultipler may include a microcell having; a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics.
Abstract:
Methods and systems for a light sensor for a gamma ray detector of a positron emission tomography (PET) imaging system is provided. The methods and systems include a plurality of micro-cells forming a micro-cell array. The methods and systems include a set of signal traces electrically coupling the plurality of micro-cells to the pin-out. The set of signal traces are configured to define a non-orthogonal signal path from each of the micro-cells to the pin-out.
Abstract:
A method and an apparatus for detecting photons are disclosed. The apparatus includes a solid state photo multiplier device having a plurality of microcells that have a band gap greater than about 1.7 eV at 25° C. The solid state photo multiplier device further includes an integrated quenching device and a thin film coating associated with each of the microcells. The solid state photo multiplier device disclosed herein operates in a temperature range of about −40° C. to about 275° C.
Abstract:
A compensating current is applied at one or more points in a signal processing path to compensate for one or both of a dark or offset current present in an input signal. In certain implementations, the dark or offset current is present in a signal generated by a photomultiplier device. The dark or offset current may be monitored in an output of the signal processing path and, the monitoring being used to determine how much compensation is needed in the signal processing path and to allocate where in the signal processing path the compensation current will be applied.
Abstract:
Exemplary embodiments are directed to characterizing a solid state photomultiplier (SSPM). The SSPM can be exposed to a light pulse that triggers a plurality of microcells of the SSPM and an output signal of the SSPM generated in response to the light pulse can be processed. The output signal of the SSPM can be proportional to a gain of the SSPM and a quantity of microcells in the SSPM and a value of an electrical parameter of the SSPM can be determined based on a relationship between the output signal of the SSPM and an over voltage applied to the SSPM.
Abstract:
A scintillator for positron emission tomography is provided. The scintillator includes a garnet compound of a formula of A3B2C3O12 and an activator ion consisting of cerium. A3 is A2X. X consists of at least one lanthanide element. A2 is selected from the group consisting of (i), (ii), (iii), and any combination thereof, wherein (i) consists of at least one lanthanide element, (ii) consists of at least one group I element selected from the group consisting of Na and K, and (iii) consists of at least one group II element selected from the group consisting of Ca, Sr, and Ba. B2 consists of Sn, Ti, Hf, Zr, and any combination thereof. C3 consists of Al, Ga, Li, and any combination thereof. The garnet compound is doped with the activator ion.
Abstract:
A silicon photomultiplier array including a plurality of microcells arranged in rows and columns. A plurality of circuit traces connecting microcell output ports to the array pixel output port, with one or more impedance matching networks connected to at least one of the circuit traces. The impedance matching networks can be connected between each row circuit trace and the pixel output port. Impedance matching networks can be located between junctions of adjacent microcell output ports and row circuit traces.