摘要:
The present invention is directed at a method of handling a device charging state for a Universal Serial Bus (USB) connected mobile electronic device comprising the steps of sensing a presence of a bus voltage; sensing an enumeration acknowledgement signal between the device and a USB host; and transmitting a signal to instruct the device to enter the device charging state.
摘要:
A battery charging circuit comprising: a semiconductor switch having an output connected to a rechargeable battery; a battery charge controller for receiving power from an external source, and supplying output power to a portable device and the input of the semiconductor switch, the current output of the battery charge controller being controllable; and a voltage sensing circuit for: measuring the voltage drop across the battery charge controller; and responding to the voltage drop across the battery charge controller by modulating the semiconductor switch to reduce the quantity of current supplied to the rechargeable battery when the voltage drop is too great; whereby the total power dissipated by the battery charge controller is controlled, the portable device receiving the power it needs to operate and the rechargeable battery receiving any additional available power.
摘要:
In accordance with the teachings described herein, a method and apparatus for handling a charging state in a mobile electronic device is provided. A universal serial bus (USB) interface may be used for connecting the mobile device to a USB host. A processing device may be used to control operation of the mobile device and receive an enumeration acknowledgement signal from the USB host via the USB interface and generate an enable signal upon receiving the enumeration acknowledgement signal. The method and apparatus may further include a rechargeable battery, a battery charger, a timing circuit, and a battery charger enabling circuit.
摘要:
Charging and power supply for mobile devices is disclosed. A USB-compliant charging and power supply circuit includes switch-mode battery charging circuitry for receiving power from an external power source and for supplying output power through an output node to an electronic system of an electronic communication device and a battery. Battery isolation circuitry includes a semiconductor switch connecting the output node to the battery. The battery isolation circuitry senses voltage at the output node and variably restricts current to the battery when the voltage is below a minimum voltage value by operationally controlling the semiconductor switch as current passes through it. During variable current restriction the electronic system is supplied required power with said battery being supplied any additional available power.
摘要:
A handheld computing device includes a notification lamp, a melody circuit coupled to the notification lamp for providing a first type notification, an electronic switch coupled to the notification lamp for providing a second type notification, and a notification controller coupled to the melody circuit and the electronic switch for selecting between the notification types. The power consumption of the second type notification is less than that of the first type notification.
摘要:
A load device includes a power input having an interface to a power supply; a peripheral power bus including an internal capacitance, and an active switch coupled to the power input and the peripheral power bus for applying power from the power input to the peripheral power bus. The load device also includes a switch controller coupled to the active switch for regulating the in-rush current drawn by the internal capacitance through the active switch while the internal capacitance is being charged.
摘要:
In accordance with the teachings described herein, a method and apparatus for handling a charging state in a mobile electronic device is provided. A universal serial bus (USB) interface may be used for connecting the mobile device to a USB host. A processing device may be used to execute programs and to control operation of the mobile device. The processing device may be operable to receive an enumeration acknowledgement signal from the USB host via the USB interface and generate an enable signal upon receiving the enumeration acknowledgement signal. A rechargeable battery may be used to power the processing device. A battery charger may be used to receive a USB bus voltage from the USB interface and use the USB bus voltage to power the processing device and to charge the rechargeable battery. The battery charger may be further operable to receive a charge enable signal that enables and disables the battery charger from powering the processing device and charging the rechargeable battery. A timing circuit may be used to detect the USB bus voltage and to measure the passage of a pre-determined amount of time upon detecting the USB bus voltage. A battery charger enabling circuit may be used to generate the charge enable signal to control the battery charger, the battery charger enabling the battery charger if the timer has measured the passage of the pre-determined amount of time or the enable signal is received from the processing device.
摘要:
A convenient source of charging power for portable communication devices is an integral power node of a computer data bus, such as a USB (universal serial bus) port. Unfortunately, USB ports have limited power capacity, making them generally incompatible with battery charge controllers (BCCs) which are designed to receive a steady, high capacity input. The invention provides a battery charging circuit which adjusts to the parameters of an external power supply such as a USB port by adding a regulating circuit to a standard BCC design. This regulating circuit maximizes the current drawn by the BCC, while keeping the voltage to the BCC above a preset minimum (the low voltage shut off level for the BCC). If the voltage to the BCC begins to drop, the regulating circuit reduces the current drawn, so the voltage rises and stays within the operating range of the BCC.
摘要:
A power management method with a portable electronic device (100) includes identifying, with a controller (202) of the portable electronic device, a power consumption event in the portable electronic device, the power consumption event having a power consumption requirement. The method further includes selecting (818), in response to the identifying, one of a collection of energy storage devices (304, 306, 308, 320) in an energy storage device farm (218) for the portable electronic device, the selecting being based at least on the power consumption requirement of the power consumption event and on one or more characteristics of the one of the plurality of energy storage devices. The portable electronic device executes the power consumption event using energy stored in the selected one of the plurality of energy storage devices. The portable electronic device (100) may be a mobile phone or other wireless communication device.
摘要:
A battery charger for charging a plurality of batteries includes a plurality of charge managers and a cross-over controller coupled to the charge managers. The charge managers are coupled to a common power source that has a finite maximum available current. The cross-over controller is configured to continuously determine the charge current that is applied to one of the batteries by one of the charge managers, and to direct another one of the charge managers to apply to another one of the batteries a charge current that is based on the determined charge current. The total of the determined charge current that is applied to the one battery and the charge current that is applied to the other battery (prior to when the voltage across the other battery reaches a rated value) is continuously substantially equal to the maximum available current.