Abstract:
An example method is provided in one example embodiment and may include subscribing to a key distribution service by a plurality of Wi-Fi access points belonging to a same mobility domain; receiving a request from a user equipment to connect to a first Wi-Fi access point of the plurality of Wi-Fi access points belonging to the same mobility domain; determining one or more second Wi-Fi access points of the plurality of Wi-Fi access points belonging to the same mobility domain that neighbor the first Wi-Fi access points; and distributing keying parameters to each of the one or more second Wi-Fi access points. The keying parameters can be associated with 802.11r pairwise master key (PMK) keying parameters.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.
Abstract:
A SON element which is operative to carry out at least two different SON functions is provided, wherein each of the SON functions is associated with at least one SON related action, and wherein a SON related action, initiated by triggering a SON function, would have been adversely affected by another SON related action, initiated by triggering another SON function, had the SON element not affected a modification in operating conditions of the cellular network, wherein the SON element is operative to: (a) assign priorities to the different SON functions; (b) assign different weights to the SON related actions; and (c) coordinate execution of SON related actions, that when executed are carried out in a way that does not breach the priorities hierarchy and the weights' order assigned to the SON related actions, thereby improving operation of the cellular network.
Abstract:
A SON element which is operative to carry out at least two different SON functions is provided, wherein each of the SON functions is associated with at least one SON related action, and wherein a SON related action, initiated by triggering a SON function, would have been adversely affected by another SON related action, initiated by triggering another SON function, had the SON element not affected a modification in operating conditions of the cellular network, wherein the SON element is operative to: (a) assign priorities to the different SON functions; (b) assign different weights to the SON related actions; and (c) coordinate execution of SON related actions, that when executed are carried out in a way that does not breach the priorities hierarchy and the weights' order assigned to the SON related actions, thereby improving operation of the cellular network.
Abstract:
An example method is provided in one example embodiment and can include obtaining, within a radio access network, a channel state for a data channel associated with a mobile terminal; including the channel state in a differentiated services (diffserv) marking within an Internet Protocol (IP) header of at least one IP packet associated with the mobile terminal; and transmitting the at least one IP packet including the IP header having the diffserv marking toward a packet data network.
Abstract:
A method is provided for managing heterogeneous cellular networks. The method comprises obtaining measurement reports from wireless entities relating to the intensity at which signals are received by each wireless entity; based on these measurement reports, and/or on geographical information of HetNet elements, identifying a macro cell located at the vicinity of the small cells; selecting one of the small cells to be a gateway cell, and other small cells to be inner cells. The gateway cell is a small cell that receives, or mobile terminals connected thereto receive, signals transmitted by the macro cell at an intensity being at least similar to intensity at which these signals are received at the inner cells; identifying physical layer identifiers (PLIs) used at the macro cell; and determining PLIs for the gateway cell which are not currently used by the macro cell, and PLIs available for use by the inner cells.
Abstract:
A method is provided for managing heterogeneous cellular networks. The method comprises obtaining measurement reports from wireless entities relating to the intensity at which signals are received by each wireless entity; based on these measurement reports, and/or on geographical information of HetNet elements, identifying a macro cell located at the vicinity of the small cells; selecting one of the small cells to be a gateway cell, and other small cells to be inner cells. The gateway cell is a small cell that receives, or mobile terminals connected thereto receive, signals transmitted by the macro cell at an intensity being at least similar to intensity at which these signals are received at the inner cells; identifying physical layer identifiers (PLIs) used at the macro cell; and determining PLIs for the gateway cell which are not currently used by the macro cell, and PLIs available for use by the inner cells.
Abstract:
A communication apparatus and method are provided for predicting effects of changes in at least one radio network parameter on a cellular network which comprises a processor which is adapted to: (a) select a source cell in a cellular network; (b) select from among a first plurality of cells being neighbors of that source cell, a second plurality of neighboring cells and define a reference cluster that includes the source cell and the second plurality of cells; and (c) use the reference cluster to predict the effects of carrying out one or more changes in at least one radio network parameter on at least one network performance indicator of the reference cluster, and based on that prediction, establishing an expected impact of the one or more changes in the at least one radio network parameter on a cellular network performance.
Abstract:
A communication apparatus and method are provided for pre-dieting effects of changes in at least one radio network parameter on a cellular network which comprises a processor which is adapted to: (a) select a source cell in a cellular network; (b) select from among a first plurality of cells being neighbors of that source cell, a second plurality of neighboring cells and define a reference cluster that includes the source cell and the second plurality of cells; and (c) use the reference cluster to predict the effects of carrying out one or more changes in at least one radio network parameter on at least one network performance indicator of the reference cluster, and based on that, prediction, establishing on expected impact of the one or more changes in the at least one radio network parameter on a cellular network performance.
Abstract:
An example method is provided in one example embodiment and may include determining a presence of user equipment (UE) in relation to small cell radio(s) of a small cell network based on information obtained through the small cell network and one or more parallel networks; and adjusting transmit power for the small cell radio(s) based on the presence of UE in relation to the small cell radio(s). Another example method can include determining that a UE in cell paging channel mode has changed its selected macro cell radio; determining that the UE is allowed service on a small cell radio located in a vicinity of a macro cell coverage area of a selected macro cell radio; and adjusting a transmit power of the small cell radio based on a presence of the UE in a surrounding macro cell coverage area of the small cell radio.