Abstract:
A scanner having a synchronization dynamic random access memory and its memory access method. The scanner has an image processor for processing digital image signals, a SDRAM compensation memory unit for holding compensation data, a SDRAM image archiving memory unit for holding processed digital image data and an input/output device for connecting with an external device. A plurality of buffers couple the compensation memory unit with the image processor, the image processor with the image archiving memory unit and the image archiving memory unit with the input/output device.
Abstract:
A single step multi-section exposure scanning method for a scanner. The scanner includes a photo-sensor and a stepper motor. The photo-sensor has N rows of sensor cells that correspond to each primary color. The scanning device is driven forward an exposure distance for each revolution of the stepper motor. The single step multi-section exposure scanning method includes the following steps. First, the photo-sensor moves forward one exposure distance. One row of sensor cells is exposed after moving every 1/Nth of the exposure distance. Thereafter, analogue voltages obtained through the exposed row of sensor cells are transmitted to an analogue/digital converter. The above process is repeated until the entire document is scanned.
Abstract:
The present invention provides a method for calculating the resolution of blood glucose which corresponding with the peak value of the rising curve. The average peak value is obtained from calculating the plurality of peak value, which determined after the pre-setting sampling time. Then, the average peak value is calculated with the resistance of the measuring circuit, reference resistance, and reference voltage to obtain the resolution of the blood glucose. Furthermore, the mapping table can be fabricated by the different height of maximum peak value and outputted voltage in different presetting sampling time, such that the resolution of blood glucose can be obtained in different outputted voltage values.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
An apparatus with a combination of a point light source and a single lens is provided. The present apparatus includes a point light source, a photodetector and a lens. The lens is placed in the same side of the point light source and the photodetector in order that the light emitting from the point light source is focused onto a target area of an object through the lens. The reflected light from the target area is focused onto the photodetector through the lens. The present apparatus can qualitatively and quantitatively monitor a content of a specific component of a tested solution. The geometric relationship of the point light source, the photodetector and the single lens can improve a measuring resolution of the present apparatus.
Abstract:
An opening method for a double-sided scanner is provided. A light source of one particular color inside a first group of light sources and a light source of a different color (or the same color) inside a second group of light source are lit to scan the front and back surface of a scan document. Optical signals from the front and back surface of the scan document are received and converted into analogue electrical signals. Thereafter, the analogue electrical signals are converted into digital electrical signal. Finally, the digital electrical signals are output to a host computer. This invention utilizes two groups of light sources (for example, light-emitting diodes) to serve as light sources for the double-sided scanner. Because light-emitting diodes require no warm-up period and is quick to switch, double-sided scanning is simplified.
Abstract:
An apparatus with a combination of a point light source and a single lens is provided. The present apparatus includes a point light source, a photodetector and a lens. The lens is placed in the same side of the point light source and the photodetector in order that the light emitting from the point light source is focused onto a target area of an object through the lens. The reflected light from the target area is focused onto the photodetector through the lens. The present apparatus can qualitatively and quantitatively monitor a content of a specific component of a tested solution. The geometric relationship of the point light source, the photodetector and the single lens can improve a measuring resolution of the present apparatus.
Abstract:
A single step multi-section exposure scanning method for a scanner. The scanner includes a photo-sensor and a stepper motor. The photo-sensor has N rows of sensor cells that correspond to each primary color. The scanning device is driven forward an exposure distance for each revolution of the stepper motor. The single step multi-section exposure scanning method includes the following steps. First, the photo-sensor moves forward one exposure distance. One row of sensor cells is exposed after moving every 1/Nth of the exposure distance. Thereafter, analogue voltages obtained through the exposed row of sensor cells are transmitted to an analogue/digital converter. The above process is repeated until the entire document is scanned.
Abstract:
A method for detecting a response of each probe zone on a test strip is provided. The present method includes providing a test strip having a color pattern displayed thereon. The color pattern occurs in response to a tested solution contacting with the test strip and including a plurality of color lines displayed in sequence from a bottom portion of the test strip to a top portion thereof. The site of each color line represents a probe zone of the test strip. Capturing a whole image of the test strip and selecting at least one scan line perpendicular to the image of the color lines therefrom. Setting a pixel position of the scan line having a minimum pixel value corresponding to a bottom edge of the test strip and using the pixel position as a reference to identify respective pixel positions of the color lines on the scan line so as to identify the image positions thereof on the whole image. A response of each probe zone of the test strip related to a gray level of a corresponding image position is thus obtained.
Abstract:
A method for differentiating dynamic range of image is disclosed. The method comprises the following steps. First of all, pixel numbers with the same level value of Density units Dn−1 and Dn are compared. Next the minimum pixel numbers of each level value of Density units Dn−1 and Dn are counted. Then the minimum pixel numbers of each level value of Density units Dn−1 and Dn are summed. Next the ratio of total minimum pixel number and total pixel number R and a specification value Rs are compared. Then whether R is smaller than Rs or not is determined so as to recognize whether Density units Dn−1 and Dn could be differentiated or not.
Abstract translation:公开了一种区分图像动态范围的方法。 该方法包括以下步骤。 首先,比较具有相同水平值的密度单元D n-1和D 的像素数。 接下来,对密度单元D n-1和D n n N的每个级别值的最小像素数进行计数。 然后求和密度单元D n-1和D n n的每个等级值的最小像素数。 接下来,比较总最小像素数和总像素数R与规格值R SUB之比。 然后确定R是否小于R S s以确定是否可以区分密度单元D 1-n 1和D 2 N 3 或不。