Abstract:
A current balance circuit includes a first and a second current sensors, an averager, a first and a second control modules, and a first and a second rheostat elements. The first and second current sensors receive a first current and a second current from a power source respectively and convert the first and second currents into a first and a second voltages. The averager receives the first and second voltages and calculates to obtain an average voltage. The first and second control modules receive the first voltage, the second voltage, and the average voltage, to obtain a first and a second control signals, to control current conduction ability of the first and second rheostat elements, to make the first and second currents keep a dynamic balance.
Abstract:
A phase modulation method with a polar transmitter. A target frequency is first designated by comparing the RF signal with a reference frequency and the phase sample. An oscillator control word is generated based on the target frequency. A digital oscillator can modulate from a first phase to a second phase to synthesize a preliminary RF signal based on the oscillator control word. When the target frequency exceeds the modulation capability of the digital oscillator, the oscillator control word is generated based on the target frequency minus 180 degrees, and the preliminary RF signal is shifted by 180 degrees to be the RF signal having the target frequency. When the target frequency does not exceed the modulation capability of the digital oscillator, the oscillator control word is generated solely based on the target frequency to output the preliminary RF signal to be the RF signal having the target frequency.
Abstract:
A recording method for an optical disk drive is implemented as follows. First, at least one of the level of the focusing error signal, the level of the tracking error signal, a wobble synchronization pattern loss, the error rate of demodulating a wobble signal, the frequency of buffer under-run occurrence, the temperature of the drive, the wobble jitter and the level of write power is detected. If at least one detected value exceeds the preset value, the recording will be ceased. Then, the rotation speed of the optical disk drive is decreased, and the recording is resumed with the decreased rotation speed. If at least one of the temperature of the drive, the wobble jitter and the estimated write power exceeds the reset value before recording starts, the rotation speed of the optical disk drive is decreased before recording.
Abstract:
A method and related apparatus for calibrating at least a parameter utilized for determining a servo signal of an optical disc drive. The method includes: (a) adjusting the parameter; (b) generating a first signal according to detecting signals outputted from one side of a photo detector; (c) generating a second signal according to detecting signals outputted from the other side of the photo detector; (d) generating an index value according to the first and second signals; and (e) if a criterion for the index value is satisfied, utilizing the parameter corresponding to the index as an optimum parameter for the servo signal.
Abstract:
In accordance with the present invention, a method and a system for promoting scanning speed are provided. The method comprises steps of determining a transmission rate of a transit interface, adjusting system clock responsive to the transmission rate of the transit interface to change a data generated rate, and scanning an original to generate data at the rate controlled by the system clock. The key aspect of the present invention is by adjusting system clock to change the data generated rate corresponding to the transmission rate of the transit interface. Therefore, in response to the transmission rate of the transit interface, the system clock is adjusted to produce the data at a rate that can reduce the possibility of memory buffer full leading to the reduction in the time wasting on start-stop processes and therefore promote the scanning speed without requiring the increase in size of a memory buffer.
Abstract:
A recording method for an optical disk drive is implemented as follows. First, at least one of the level of the focusing error signal, the level of the tracking error signal, a wobble synchronization pattern loss, the error rate of demodulating a wobble signal, the frequency of buffer under-run occurrence, the temperature of the drive, the wobble jitter and the level of write power is detected. If at least one detected value exceeds the preset value, the recording will be ceased. Then, the rotation speed of the optical disk drive is decreased, and the recording is resumed with the decreased rotation speed. If at least one of the temperature of the drive, the wobble jitter and the estimated write power exceeds the reset value before recording starts, the rotation speed of the optical disk drive is decreased before recording.
Abstract:
Provided are a system and method for creating a reticle field layout (RFL). In one example, the method includes receiving information for a RFL design by a computer system directly from a user via a computer interface. The RFL design is automatically verified using predefined specification and design rules accessible to the computer system. The RFL design may be modified by adding additional features before being finalized.
Abstract:
A biosensor with multi-channel A/D conversion and a method thereof are provided. The present biosensor includes a chip generating a time-dependent analog signal in response to a content of a specific component of a specimen provided thereon, a multi-channel A/D converter, and a microprocessor. The multi-channel A/D converter has multiple channels simultaneously receiving the time-dependent analog signal in each sampling interval to convert the time-dependent analog signal to a set of digital signals. The microprocessor receives the sets of digital signals in a period of sampling time and determines the content of the specific component based on the sets of digital signals. The present biosensor provides a multi-channel A/D conversion for the time-dependent analog signal to improve the resolution of the determination of the content of the specific component.
Abstract:
A memory card ejecting structure includes an electrically insulative frame base, the frame base having a receiving unit mounted with a set of terminals for receiving a memory card and two arms forwardly extended from two opposite lateral sides of the receiving unit, the receiving unit having an endless guide groove, an ejecting member slidably mounted in the frame base and adapted for ejecting the inserted memory card out of the receiving unit, and a spring member connected between the ejecting member and one arm of the frame base, the spring member having an angled locating wire rod backwardly extended from a rear end ring thereof and positioned in the endless guide groove to hold the spring member between a stretched position and a released position.
Abstract:
A method for calculating efficiency of a power supply system includes: displaying a parameter selection interface on the display unit for selecting power supply parameters and transmission line parameters. Obtaining power supply parameters and transmission line parameters selected by the user via the parameter selection interface when determining the user has finished the selection. Determining a efficiency of a selected power supply of the power supply parameters according to the relationship table, and calculating a sum efficiency according to the obtained power supply parameters and the transmission line parameters and the efficiency of the selected power supply. And calculating a total efficiency of the power supply system according to each sum efficiency when determining that all of the power supplies of the power supply system have been selected.