Abstract:
An electron emission display includes first and second substrates facing each other, a plurality of driving electrodes formed on the first substrate, a plurality of electron emission regions controlled by the driving electrodes, a focusing electrode disposed on and insulated from the driving electrodes and provided with openings through which electron beams pass, a plurality of phosphor layers formed on a surface of the second substrate, an anode electrode formed on surfaces of the phosphor layers, and a plurality of spacers for maintaining a gap between the first and second substrates. Among the electron emission regions disposed in the opening adjacent to the spacer, one electron emission region, which is closest to the adjacent spacer, is spaced apart from an inner wall of the opening by a first distance that is different from a second distance from another electron emission region, which is farthest from the adjacent spacer, to the inner wall of the opening.
Abstract:
A vacuum vessel includes first and second substrates facing each other, and a sealing member arranged at peripheries of the first and the second substrates to define a vacuum-tightly sealed inner space together with the two substrates. The sealing member has a support frame of a predetermined width and a predetermined height, and an adhesive portion arranged external to the support frame to attach the first and the second substrates together. The support frame is wider than the adhesive portion, and the difference between the width and height of the support frame is within a range of ±10% of the width or the height.
Abstract:
An electron emission device includes first and second substrates separated by a predetermined distance, electron emission regions on the first substrate, driving electrodes on the first substrate, a focusing electrode over the driving electrodes and insulated from the driving electrodes, and a plurality of spacers disposed between the first and the second substrates, each spacer having a conductive film on an outer surface. The conductive film is electrically connected to the focusing electrode.
Abstract:
An electron emission device is provided comprising first and second substrates facing each other and separated from each other by a predetermined distance. An electron emission unit is disposed on the first substrate, and an image display unit is disposed on the second substrate. A focusing electrode comprising a plurality of beam-guide holes is disposed between the first and second substrates. The portion of the focusing electrode located near a beam-guide hole comprises a thin layer. The remainder of the focusing electrode comprises a thick layer having a thickness larger than the thickness of the thin layer.
Abstract:
An electron emission device includes a substrate, an anode electrode formed on the substrate, phosphor layers formed on the anode electrode, and resistance layers formed on the substrate and electrically connected to the anode electrode.