Abstract:
A scanned light display system includes a light emitter array having a plurality of light sources operable to emit diverging light and an array of collimating elements positioned so that each of the collimating elements receive at least a portion of the light emitted from a corresponding one of the light sources. Each of collimating elements is configured to substantially collimate the received light from at least one corresponding light source into respective beams. The scanned beam display is operable to scan the respective beams to provide an image to a viewer. The displayed image appears substantially fixed to a viewer as the viewer's eye moves relative to the array of collimating elements. In one embodiment, each of the collimating elements is a curved mirror. In other embodiments, each of the collimating elements includes at least one lens or a curved mirror/lens pair.
Abstract:
Scanned beam imagers and endoscopes are disclosed. In one embodiment, a scanned beam imager includes a first light source operable to provide a first beam and a second light source operable to provide a second beam. The scanned beam imager includes a scanner positioned to receive the first and second beams. The scanner is operable to scan the first beam across a FOV as a first scanned beam having a first beam waist distance and the second beam across the FOV as a second scanned beam having a second beam waist distance not equal to the first beam waist distance. A detector is configured to collect reflected light from the FOV. In another embodiment, a scanned beam imager is configured to scan the first and second beams across different FOVs. Such scanned beam imagers may also be incorporated into endoscope tips and bar code scanners.
Abstract:
A portable end device, such as a bar code scanner, may be equipped with auxiliary interfaces. The auxiliary interfaces may be easily added to the end device as a replaceable cover, such as a replaceable battery door. A signal path conducts signals to and from the replaceable cover. One auxiliary interface is a Bluetooth radio. Data integrity protocols may be selected to guarantee delivery and guarantee no duplicate deliveries. Host pairing algorithms may provide standard or strong pairing with a host computer. Ergonomic interface features allow a user to control and monitor the operation of the end device and the data link with minimal hardware cost and battery life impact. Host software programs provide data routing, automatic reestablishment of the data link, and other functions. The system is adaptable to a wide array of use environments through the selection of timer parameters in the end device.
Abstract:
According to embodiments, scanned beam source may include a first beam shaping optical element aligned to receive a composite beam of light carrying a plurality of wavelength components and a second beam shaping optical element aligned to receive the composite beam of light from the first beam shaping optical element and configured to modify the first plurality of wavelength components of the composite beam to a plurality of dimensions proportional to wavelength. The first beam shaping optic may be, for example, a top-hat converter. The second beam-shaping optic may be, for example, a polarization-sensitive clipping aperture, a wavelength-dependent clipping aperture, and/or an achromatic corrector.
Abstract:
A photoluminescent light source includes an excitation light source operable to emit light at a primary wavelength and a photoluminescent material optically coupled to the excitation light source. The photoluminescent material has a characteristic to emit light at a secondary wavelength in response to absorbing light at the primary wavelength. Scanned beam systems employing photoluminescent light sources and methods of using the photoluminescent light sources are also disclosed.
Abstract:
An endoscope system and method includes an endoscope tip coupled to a endoscope console for providing images of anatomical features imaged using the endoscope system. The system also includes a calibration device having known optical properties. The calibration device is imaged using the endoscope system, and data corresponding to the image is obtained. This data are compared to data corresponding to the known optical properties of the calibration device. Based on this comparison, calibration data corresponding to imaging errors of the endoscope system are obtained. The calibration data are used to calibrate the endoscope system.
Abstract:
A control system for a projection display includes means for compensating for spatial variations or artifacts in light scattered by a projection screen. According to embodiments, a sensor produces a signal corresponding to the amount of light scattered to a viewer on a region-by-region or pixel-by-pixel basis. A screen map is created from the sensor signal. Input display data is convolved with the screen map to produce a compensated display signal. The compensated display signal drives a projection display engine. The projected light driven by the compensated display signal convolves with the display screen to produce a viewable image having reduced artifacts. According to one embodiment, a relatively fixed screen map is produced during a calibration routine. According to another embodiment the screen map is updated dynamically during a display session.
Abstract:
A scanned light display system includes a light emitter array having a plurality of light sources operable to emit diverging light and an array of collimating elements positioned so that each of the collimating elements receive at least a portion of the light emitted from a corresponding one of the light sources. Each of collimating elements is configured to substantially collimate the received light from at least one corresponding light source into respective beams. The scanned beam display is operable to scan the respective beams to provide an image to a viewer. The displayed image appears substantially fixed to a viewer as the viewer's eye moves relative to the array of collimating elements. In one embodiment, each of the collimating elements is a curved mirror. In other embodiments, each of the collimating elements includes at least one lens or a curved mirror/lens pair.
Abstract:
A variable illuminator, for instance a device for scanning a beam of light, emits a selected amount of power to a plurality of spots across a field of view. The amount of power is determined as inversely proportional to the apparent brightness of each spot. In the case where the spot size is equal to pixel size, the device may operate with a non-imaging detector. In the case where pixel size substantially equals spot size, the output of the variable illuminator may be converged to produce a substantially uniform detector response and the image information is determined as the inverse of a frame buffer used to drive the variable illuminator. The illuminator and detector may be driven synchronously. In the case where an imaging detector is used, the variable illumination may be used to compress the dynamic range of the field of view to substantially within the dynamic range of the imaging detector.