COOLED AIRFOIL IN A TURBINE ENGINE
    21.
    发明申请
    COOLED AIRFOIL IN A TURBINE ENGINE 有权
    涡轮发动机冷却空气

    公开(公告)号:US20120269647A1

    公开(公告)日:2012-10-25

    申请号:US13090294

    申请日:2011-04-20

    Abstract: An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

    Abstract translation: 燃气涡轮发动机中的翼型件包括外壁和内壁。 外壁包括前缘,从前缘朝向方向相对的后缘,压力侧和吸力侧。 内壁在单个弦位置处联接到外壁,并且包括与外壁的压力和吸力侧隔开的部分,以便在内壁和相应的压力和吸力侧之间形成第一和第二间隙。 内壁在其中限定一个室,并且包括在相应间隙和室之间提供流体连通的开口。 间隙接收冷却流体,当其流过间隙时,向外壁提供冷却。 冷却流体在穿过至少大部分间隙之后通过内壁中的开口进入腔室。

    RING SEGMENT WITH FORKED COOLING PASSAGES
    23.
    发明申请
    RING SEGMENT WITH FORKED COOLING PASSAGES 有权
    带有冷却通道的环形分段

    公开(公告)号:US20120057960A1

    公开(公告)日:2012-03-08

    申请号:US13213459

    申请日:2011-08-19

    CPC classification number: F01D11/08 F05D2250/70 F05D2260/20

    Abstract: A ring segment is provided for a gas turbine engine includes a panel and a cooling system. Cooling fluid is provided to an outer side of the panel and an inner side of the panel defines at least a portion of a hot gas flow path through the engine. The cooling system is located within that panel and receives cooling fluid from the outer side of the panel for cooling the panel. The cooling system includes a plurality of cooling fluid passages that receive cooling fluid from the outer side of the panel. The cooling fluid passages each have a generally axially extending portion that includes at least one fork. The fork(s) divide each cooling fluid passage into at least two downstream portions that each receives cooling fluid from the respective axially extending portion.

    Abstract translation: 提供了一种用于燃气涡轮发动机的环段,其包括面板和冷却系统。 冷却流体设置在面板的外侧,并且面板的内侧限定通过发动机的热气体流路的至少一部分。 冷却系统位于该面板内并从面板的外侧接收冷却流体以冷却面板。 冷却系统包括从板的外侧接收冷却流体的多个冷却流体通道。 冷却流体通道各自具有包括至少一个叉的大致轴向延伸的部分。 叉子将每个冷却流体通道分成至少两个下游部分,每个下游部分从相应的轴向延伸部分接收冷却流体。

    NEAR-WALL SERPENTINE COOLED TURBINE AIRFOIL
    24.
    发明申请
    NEAR-WALL SERPENTINE COOLED TURBINE AIRFOIL 有权
    近壁式冷却涡轮机

    公开(公告)号:US20120014808A1

    公开(公告)日:2012-01-19

    申请号:US12836060

    申请日:2010-07-14

    Applicant: Ching-Pang Lee

    Inventor: Ching-Pang Lee

    Abstract: A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

    Abstract translation: 由涡轮机翼(20A)的压力侧和吸力侧壁(22,24)之间的空腔(49)中的内壁(50,52)形成的蛇形冷却剂流动路径(54A-54G)。 冷却剂流(58)进入(56)翼型件的端部,流入跨度通道(54A),然后在压力侧壁的内表面上向前(54B)流动,然后在前缘 26),并且沿吸力侧壁的前部流回,然后围绕内壁(52)向前和向后循环(54E),然后沿着吸力侧壁的中间部分流动,然后流入 在压力侧和吸力侧壁之间的后通道(54G),然后离开后缘(28)。 这提供了与翼型件的加热形状相匹配的冷却,最小化差异热膨胀,恢复冷却剂,并最小化所需的流量。

    DAMPING RESONATOR WITH IMPINGEMENT COOLING
    25.
    发明申请
    DAMPING RESONATOR WITH IMPINGEMENT COOLING 有权
    阻尼谐振器与冲击冷却

    公开(公告)号:US20120006028A1

    公开(公告)日:2012-01-12

    申请号:US12832116

    申请日:2010-07-08

    Abstract: A resonance chamber (42) has an outer wall (32) with coolant inlet holes (34A-C), an inner wall (36) with acoustic holes (38), and side walls (40A-C) between the inner and outer walls. A depression (33A-C) in the outer wall has a bottom portion (50) that is close to the inner wall compared to peaks (37A-C) of the outer wall. The coolant inlet holes may be positioned along the bottom portion of the depression and along a bottom portion of the side walls to direct coolant flows (44, 51) toward impingement locations (43) on the inner wall that are out of alignment with the acoustic holes. This improves impingement cooling efficiency. The peaks (37A-C) of the outer wall provide volume in the resonance chamber for a target resonance.

    Abstract translation: 共振室(42)具有外壁(32),其具有冷却剂入口孔(34A-C),具有声孔(38)的内壁(36)和内壁和外壁之间的侧壁(40A-C) 。 外壁上的凹部(33A-C)具有与外壁的顶部(37A-C)相比靠近内壁的底部部分(50)。 冷却剂入口孔可以沿着凹陷的底部部分并且沿着侧壁的底部部分定位,以将冷却剂流(44,41)引向内壁上与声学不对准的冲击位置(43) 孔。 这提高了冲击冷却效率。 外壁的峰(37A-C)在共振室中提供用于目标共振的体积。

    METHOD OF CASTING A COMPONENT HAVING INTERIOR PASSAGEWAYS
    26.
    发明申请
    METHOD OF CASTING A COMPONENT HAVING INTERIOR PASSAGEWAYS 有权
    铸造具有内部通道的部件的方法

    公开(公告)号:US20110293434A1

    公开(公告)日:2011-12-01

    申请号:US13087428

    申请日:2011-04-15

    Abstract: A method of casting a component (42) having convoluted interior passageways (44). A desired three dimensional structure corresponding to a later-formed metal alloy component is formed by stacking a plurality of sheets (18, 20) of a fugitive material.The sheets contain void areas (22) corresponding to a desired interior passageway in the metal alloy component. A ceramic slurry material is cast into the three dimensional structure to form either a ceramic core (34) or a complete ceramic casting vessel (38). If just a ceramic core is formed, a wax pattern is formed around the ceramic core and an exterior ceramic shell (38) is formed around the wax pattern by a dipping process prior to the removal of the fugitive material and wax. An alloy component having the desired interior passageway is cast into the casting vessel after the fugitive material is removed.

    Abstract translation: 一种铸造具有卷曲内部通道(44)的部件(42)的方法。 对应于后来形成的金属合金部件的期望的三维结构通过堆叠多个片状物(18,20)而形成。 这些板包含对应于金属合金部件中期望的内部通道的空隙区域(22)。 将陶瓷浆料材料铸造成三维结构以形成陶瓷芯(34)或完整的陶瓷铸造容器(38)。 如果仅形成陶瓷芯,则在陶瓷芯周围形成蜡图案,并且在除去逸散材料和蜡之前通过浸渍工艺在蜡图案周围形成外部陶瓷壳(38)。 具有所需内部通道的合金部件在除去逸散材料之后被浇注入铸造容器中。

    Discreetly Defined Porous Wall Structure for Transpirational Cooling
    27.
    发明申请
    Discreetly Defined Porous Wall Structure for Transpirational Cooling 有权
    用于旋转冷却的谨慎定义的多孔壁结构

    公开(公告)号:US20110262695A1

    公开(公告)日:2011-10-27

    申请号:US12765004

    申请日:2010-04-22

    Abstract: A wall structure (32, 42, 68, 70, 80) with layers (A, B, C, D, E) of non-random voids (26A, 26B, 28B, 30B) that interconnect to form discretely defined tortuous passages between an interior (21) and an exterior surface (23) of the wall for transpiration cooling of the wall. A coolant flow (38) through the wall may be metered by restrictions in coolant outlets (31) and/or within the passages to minimize the coolant requirement. Pockets (44) may be formed on the exterior surface of the wall for thermal Insulation (46). The layers may be formed by lamination, additive manufacturing, or casting. Layer geometries include alternating layers (A, B, C) with different overlapping void patterns (42), 3-D lattice structures (70), and offset waffle structures (80).

    Abstract translation: 具有非随机空隙(26A,26B,28B,30B)的层(A,B,C,D,E)的壁结构(32,42,68,70,80),其互连以在 所述壁的内部(21)和外表面(23)用于所述壁的蒸发冷却。 通过壁的冷却剂流(38)可以通过冷却剂出口(31)和/或通道内的限制来计量,以使冷却剂需求最小化。 口袋(44)可以形成在隔热壁的外表面上(46)。 层可以通过层压,添加剂制造或铸造形成。 层几何形状包括具有不同重叠空白图案(42),3-D网格结构(70)和偏置华夫饼结构(80)的交替层(A,B,C)。

    Plasma Induced Flow Control of Boundary Layer at Airfoil Endwall
    28.
    发明申请
    Plasma Induced Flow Control of Boundary Layer at Airfoil Endwall 失效
    翼型端壁边界层等离子体诱导流量控制

    公开(公告)号:US20110150653A1

    公开(公告)日:2011-06-23

    申请号:US12640242

    申请日:2009-12-17

    CPC classification number: F01D5/145 F05D2270/172 Y02T50/67 Y02T50/673

    Abstract: Plasma generators (48, 49, 70, 71) in an endwall (25) of an airfoil (22) induce aerodynamic flows in directions (50) that modify streamlines (47) of the endwall boundary layer toward a streamline geometry (46) of a midspan region of the airfoil. This reduces vortices (42) generated by the momentum deficit of the boundary layer, increasing aerodynamic efficiency. The plasma generators may be arrayed around the leading edge as well as between two airfoils (22) in a gas turbine nozzle structure, and may be positioned at correction points (68) in streamlines caused by surface contouring (66) of the endwall. The plasma generators may be oriented to generate flow vectors (74) that combine with boundary layer flow vectors (72) to produce resultant flow vectors (76) in directions that reduce turbulence.

    Abstract translation: 翼型件(22)的端壁(25)中的等离子体发生器(48,49,70,71)在方向(50)上引起空气动力学流动,所述方向(50)将端壁边界层的流线(47)改变为流线几何形状(46) 翼型的跨跨区域。 这减少了由边界层的动量缺失产生的旋涡(42),从而提高了空气动力学效率。 等离子体发生器可以围绕前缘以及在燃气涡轮喷嘴结构中的两个翼型件(22)之间排列,并且可以位于由端壁的表面轮廓(66)引起的流线中的校正点(68)处。 等离子体发生器可以被定向以产生与边界层流向量(72)组合的流向量(74),以在减少湍流的方向上产生合成流向量(76)。

    Plasma enhanced rapidly expanded gas turbine engine transition duct
    29.
    发明授权
    Plasma enhanced rapidly expanded gas turbine engine transition duct 有权
    等离子体增强了快速扩大的燃气轮机发动机过渡管道

    公开(公告)号:US07870719B2

    公开(公告)日:2011-01-18

    申请号:US11580788

    申请日:2006-10-13

    Abstract: A plasma enhanced rapidly expanded duct system includes a gas turbine engine inter-turbine transition duct having radially spaced apart conical inner and outer duct walls extending axially between a duct inlet and a duct outlet. A conical plasma generator produces a conical plasma along the outer duct wall. An exemplary embodiment of the conical plasma generator is mounted to the outer duct wall and including radially inner and outer electrodes separated by a dielectric material. The dielectric material is disposed within a conical groove in a radially inwardly facing surface of the outer duct wall. An AC power supply is connected to the electrodes to supply a high voltage AC potential to the electrodes.

    Abstract translation: 等离子体增强的快速扩张的管道系统包括燃气涡轮发动机涡轮机间过渡管道,其具有在管道入口和管道出口之间轴向延伸的径向间隔开的锥形内部和外部管道壁。 锥形等离子体发生器沿着外管道壁产生锥形等离子体。 锥形等离子体发生器的示例性实施例安装到外部管道壁并且包括由电介质材料隔开的径向内部和外部电极。 介电材料设置在外管道壁的径向向内的表面内的锥形槽内。 AC电源连接到电极以向电极提供高电压AC电位。

    Plasma Clearance Controlled Compressor
    30.
    发明申请
    Plasma Clearance Controlled Compressor 审中-公开
    等离子体间隙控制压缩机

    公开(公告)号:US20100284795A1

    公开(公告)日:2010-11-11

    申请号:US11966309

    申请日:2007-12-28

    CPC classification number: F01D11/20 F05D2270/172

    Abstract: A plasma leakage flow control system for a compressor is disclosed, comprising a circumferential row of compressor blades, an annular casing surrounding the tips of the blades, located radially apart from the tips of the blades and at least one annular plasma generator located on the annular casing. The annular plasma generator comprises an inner electrode and an outer electrode separated by a dielectric material. A gas turbine engine having a plasma leakage flow control system further comprises an engine control system which controls the operation of the annular plasma generator such that the blade tip leakage flow can be changed.

    Abstract translation: 公开了一种用于压缩机的等离子体泄漏流量控制系统,包括圆周排的压缩机叶片,围绕叶片尖端的环形壳体,位于与叶片的尖端径向分开的位置以及至少一个环形等离子体发生器,其位于环形 套管。 环形等离子体发生器包括由电介质材料隔开的内电极和外电极。 具有等离子体泄漏流量控制系统的燃气涡轮发动机还包括发动机控制系统,其控制环形等离子体发生器的操作,使得可以改变叶片尖端泄漏流。

Patent Agency Ranking