Abstract:
A photoelectric conversion device includes a plurality of pixels arranged to form a plurality of columns, each of the pixels including a photoelectric conversion unit including first and second electrodes, a photoelectric conversion layer between the first and second electrodes, and an insulating layer between the photoelectric conversion layer and the second electrode, an amplifier unit connected to the second electrode and configured to output a signal, and a reset unit for supplying a reset voltage to the second electrode. In accordance with a voltage applied between the first and second electrodes, an accumulating operation for accumulating signal charges and a removing operation for removing the signal charges are alternately executed, the reset unit supplies the reset voltage for at least a part of a horizontal scanning period, and the period during which the reset unit supplies the reset voltage is longer than the horizontal scanning period.
Abstract:
An imaging apparatus according to the present invention includes a substrate including a plurality of pixel circuits arranged thereon and a semiconductor layer disposed on the substrate. Each of the plurality of pixel circuits includes an amplification transistor configured to output a signal based on charge generated in the semiconductor layer. The charge generated in the semiconductor layer is transferred in a first direction parallel to a surface of the substrate.
Abstract:
A solid-state image sensor includes a plurality of first pixels and a plurality of second pixels. Each of the plurality of first pixels includes a first filter having a visible light transmittance higher than an infrared light transmittance, and a first photoelectric converter configured to receive visible light transmitted through the first filter, and each of the plurality of second pixels includes a second filter having an infrared light transmittance higher than a visible light transmittance, and a second photoelectric converter configured to receive infrared light transmitted through the second filter. The plurality of second pixels are divided into a plurality of groups each includes at least two second pixels. The solid-state image sensor includes a synthesizer configured to synthesize a signal from signals of the at least two second pixels included in each group.
Abstract:
An image pickup device according to the present invention is an image pickup device in which a plurality of pixel are arranged in a semiconductor substrate. Each of the plurality of pixels includes a photoelectric conversion element, a floating diffusion (FD) region, a transfer gate that transfers charges in the first semiconductor region to the FD region, and an amplification transistor whose gate is electrically connected to the FD region. The photoelectric conversion element has an outer edge which has a recessed portion in plan view, a source region and a drain region of the amplification transistor are located in the recessed portion, and the FD region is surrounded by the photoelectric conversion region or is located in the recessed portion in plan view.
Abstract:
A solid-state imaging device comprises a first pixel group includes a first photoelectric conversion unit that converts into electric charges reflection light pulses from an object irradiated with an irradiation light pulse, a first electric charge accumulation unit accumulating the electric charges in synchrony with turning on the irradiation light pulses, and a first reset unit resetting the electric charges; and a second pixel group includes a second photoelectric conversion unit that converts the reflection light into electric charges, a second electric charge accumulation unit that accumulates the electric charges synchronously with a switching the irradiation light pulses from on to off, and a second reset unit that releases a reset of the electric charges converted by the second photoelectric conversion unit.
Abstract:
A photoelectric conversion device includes a voltage control unit connected to a first node of a capacitive element and a transistor via the same piece of wiring and configured to output a plurality of voltages having different values to the same piece of wiring.
Abstract:
An image pickup device according to an embodiment includes a substrate on which a plurality of pixel circuits are disposed, a semiconductor layer disposed on the substrate, a first electrode disposed on the semiconductor layer, and a second electrode disposed between the semiconductor layer and the substrate. A continuous portion of the semiconductor layer includes a light receiving region disposed between the first electrode and the second electrode and a charge hold region different from the light receiving region.
Abstract:
Provided is a photoelectric conversion device including: a pixel array including a plurality of pixels each including a first electrode, a second electrode, and a photoelectric conversion layer arranged between the first and second electrodes, in which the pixels include a first pixel having a first color filter and a second pixel having a second color filter different from the first color filter; a potential supply line that supplies an electric potential to the first electrodes of the first pixel and the second pixel; and control lines configured to supply different electric potentials to the second electrodes of the first pixel and the second pixel, respectively, to compensate a difference between a dependency of a sensitivity of the first pixel on a bias voltage applied to the photoelectric conversion layer and a dependency of a sensitivity of the second pixel on a bias voltage applied to the photoelectric conversion layer.
Abstract:
A photoelectric conversion device includes a blocking unit located between a photoelectric conversion layer and a second electrode unit and configured to cause electric charge having a first polarity to be injected from the photoelectric conversion layer into the second electrode unit and to prevent electric charge having a second polarity opposite to the first polarity from being injected from the photoelectric conversion layer into the second electrode unit, and a voltage supply unit configured to supply a second voltage to one of a first electrode unit and the second electrode unit such that electric charge having the first polarity is prevented from being injected from the photoelectric conversion layer into the second electrode unit.
Abstract:
A solid-state imaging device comprises a first pixel group includes a first photoelectric conversion unit that converts into electric charges reflection light pulses from an object irradiated with an irradiation light pulse, a first electric charge accumulation unit accumulating the electric charges in synchrony with turning on the irradiation light pulses, and a first reset unit resetting the electric charges; and a second pixel group includes a second photoelectric conversion unit that converts the reflection light into electric charges, a second electric charge accumulation unit that accumulates the electric charges synchronously with a switching the irradiation light pulses from on to off, and a second reset unit that releases a reset of the electric charges converted by the second photoelectric conversion unit.