Abstract:
The present subject matter relates to a touch panel, a driving method thereof, and a display device, for multi-touch function of an in cell capacitive touch panel in a twisted nematic mode. The touch panel includes an array substrate and a color filter substrate arranged oppositely, and a liquid crystal layer formed therebetween. The array substrate includes gate lines, data lines and pixel units each formed by adjacent gate lines and adjacent data lines arranged crosswise. Each pixel unit includes a thin film transistor and a pixel electrode, and the color filter substrate includes common electrodes. The pixel electrodes load data signals through the data lines in a display period, and load driving signals through the data lines in a touch-control period. The common electrodes load common electrode signals through common electrode lines in the display period, and output sensing signals through the common electrode lines in the touch-control period.
Abstract:
Embodiments of the disclosure disclose an electroluminescence display device and a fabrication method thereof. The electroluminescence display device comprises an opposed substrate (20) and an array substrate (10). The array substrate (10) comprises: a first substrate (11), and a thin film transistor (12), a first protective layer (131) and a first connection electrode (141) sequentially disposed on the first substrate (11). The first connection electrode (141) is connected to a drain electrode of the thin film transistor (12). The opposed substrate (20) comprises: a second substrate (21), and a first electrode (24), an organic electroluminescence layer (25) and a second electrode (26) sequentially disposed on the second substrate (21). The second electrode (26) and the first connection electrode (141) are connected with each other by a conductive adhesive (40). Thereby, the reliability of the electrical connection between the thin film transistor and the second electrode is enhanced, a film-forming time in the fabrication process of the connection electrode is shortened, and etching difficulty of the connection electrode reduced, and thus the productivity is improved.
Abstract:
The present invention provides an organic electroluminescent device packaging structure, comprising a first substrate, a second substrate and an organic electroluminescent device, the organic electroluminescent device being arranged on the first substrate, and the second substrate and the first substrate being spaced apart to arrange the organic electroluminescent device in a sealed space between the first substrate and the second substrate, wherein the organic electroluminescent device packaging structure further comprises a first barrier layer and filling oil filled in the sealed space, and the first barrier layer covers the outer surface of the organic electroluminescent device.
Abstract:
Embodiments of the present invention provide a conductive substrate, a manufacturing method thereof and a display device. The conductive substrate includes a base substrate and a first conductive layer and a second conductive layer disposed on the base substrate, wherein the first conductive layer and the second conductive layer contact with each other, the first conductive layer is configured to be electrically connected with separated parts after the second conductive layer is fractured, and the first conductive layer includes a composite material layer or a nanowire conductive network layer.
Abstract:
The present disclosure relates to a display back plate and a display device. The display back plate includes a display area and a non-display area surrounding the display area, wherein the non-display area is provided with at least one circle of first cofferdam surrounding the display area, a first thin film encapsulation layer is arranged on the first cofferdam, and the non-display area is provided with a fan-out area, a second cofferdam is arranged on one side of the first cofferdam close to the fan-out area, the second cofferdam is provided with a first bonding pattern including a plurality of protrusions, and the first thin film encapsulation layer at least partially covers the protrusions.
Abstract:
An organic light emitting diode display panel is disclosed. The organic light emitting diode display panel includes a first substrate and a second substrate disposed opposite to each other. The first substrate includes a first lead connected to a cathode. The second substrate includes a second lead connected to a peripheral circuit. The first lead is connected to the second lead through a connection portion.
Abstract:
A display panel includes an array substrate and a package substrate disposed opposite to each other, wherein, the array substrate includes a plurality of pixel units arranged in an array, and at least one of the pixel units includes a driving transistor. Further, the package substrate includes a first electrode and a second electrode disposed opposite to each other and an insulating layer located between the two electrodes. Wherein, the first electrode is electrically connected to the first terminal of the driving transistor, and the second electrode is electrically connected to the control terminal of the driving transistor.
Abstract:
An array substrate, a display panel and a display device are provided. The array substrate includes a plurality of pixel units, wherein each pixel unit includes a storage capacitor including at least three electrode plates parallel to each other, the at least three electrode plates parallel to each other include a first electrode plate, a second electrode plate and a third electrode plate, the first electrode plate is electrically connected to the second electrode plate, the third electrode plate is disposed between the first electrode plate and the second electrode plate, and the first electrode plate and the second electrode plate each have a portion facing towards the third electrode plate.
Abstract:
A pixel defining layer and a method for manufacturing the same, a display panel and a method for manufacturing the same, and a display device are provided. The pixel defining layer includes a plurality of pixel defining patterns. Each of the pixel defining patterns includes a first sub-defining pattern and a second sub-defining pattern, the second sub-defining pattern being embedded within the first sub-defining pattern, and an outer edge of the second sub-defining pattern is connected to an inner edge of the first sub-defining pattern, wherein a thickness of the first sub-defining pattern is greater than a thickness of the second sub-defining pattern, and a region surrounded by the second sub-defining pattern is a light emitting region of a light emitting layer.
Abstract:
An array substrate and a fabrication method thereof, and a display panel are provided. The array substrate includes: a base substrate; a first electrode layer and a first pixel defining layer, on the base substrate; a light emitting layer, on the first electrode layer; and a second pixel defining layer, on the first pixel defining layer and the light emitting layer, wherein, the second pixel defining layer overlaps with the light emitting layer in a direction perpendicular to the base substrate.