Abstract:
A display method for a display device and the display device are provided. The display device includes multiple gate lines and multiple data lines, each of the gate lines extends in a row direction, and each of the data lines extends in a column direction. The method includes: dividing a display region of the display device into multiple sub-regions, where each of the sub-regions includes all of the data lines in the row direction and includes at least one of the gate lines in the column direction; controlling, when the display device is shut down or powered down, a gate driving circuit of the display device to input a turn-on voltage into the gate lines in each of the sub-regions one by one; and controlling a source driving circuit of the display device to input a voltage corresponding to a grayscale value of 0 to each of the data lines.
Abstract:
The present disclosure provides a display unit and a method for manufacturing the display unit, and an array substrate. The display unit includes a first electrode; a second electrode opposite to the first electrode; and a passivation layer, an auxiliary electrode and a light emitting functional layer between the first electrode and the second electrode, the passivation layer, the auxiliary electrode and the light emitting functional layer being disposed from the first electrode to the second electrode in sequence. The first electrode is electrically connected to the auxiliary electrode. One of the first electrode and the second electrode is transflective while the other one of the first electrode and the second electrode is transflective or reflective, and a first cavity is formed between the first electrode and the second electrode.
Abstract:
An organic light emitting device includes: a substrate (200), and a first electrode layer (201), a second electrode layer (202), a color conversion layer (206), a first light emitting layer (203), and a second light emitting layer (204) that are stacked on the substrate (200), wherein the first light emitting layer (203) is disposed between the first electrode layer (201) and the second electrode layer (202), the first light emitting layer (203) emits the first emission light under electric excitation; the first electrode layer (201) is a transparent electrode layer, the first color conversion layer (206) is disposed at one side of the first electrode layer (201) away from the second electrode layer (202); the second light emitting layer (204) is disposed between the first light emitting layer (203) and the second electrode layer (202), the second light emitting layer (204) emits the second emission light under electric excitation; and a peak wavelength of the first emission light is larger than a peak wavelength of the first emission light in the blue light region.
Abstract:
The present invention provides an OLED panel, a packaging method thereof and a display device. The OLED panel includes a packaging coverplate and an OLED substrate opposite to each other, the OLED substrate having a display area and a packaging area surrounding the display area; and glass glue provided between the packaging coverplate and the OLED substrate and corresponding to the packaging area, and the OLED panel further includes a support structure provided at a side of the glass glue away from the display area, the support structure being used for supporting the packaging coverplate and the OLED substrate when cutting a display motherboard to form the OLED panel.
Abstract:
An organic light emitting diode (OLED) device includes a cathode, an anode and an organic function layer interposed between the cathode and the anode. A material of the cathode is at least one of a metal and a metal alloy. The light emitted from the organic function layer exits at least through the cathode. The organic light emitting diode device further includes an anti-reflective layer on a side of the cathode that faces away from the organic function layer. The anti-reflective layer includes a first surface and a second surface opposite to each other. The first surface contacts the cathode. External light reflected by the first surface and external light reflected by the second surface interfere destructively.
Abstract:
An organic light emitting diode (OLED) device includes a cathode, an anode and an organic function layer interposed between the cathode and the anode. A material of the cathode is at least one of a metal and a metal alloy. The light emitted from the organic function layer exits at least through the cathode. The organic light emitting diode device further includes an anti-reflective layer on a side of the cathode that faces away from the organic function layer. The anti-reflective layer includes a first surface and a second surface opposite to each other. The first surface contacts the cathode. External light reflected by the first surface and external light reflected by the second surface interfere destructively.