Abstract:
Systems, methods, and devices for diverting surface current on a display panel support plate are provided. An electronic transceiver device including a display panel may include a display back plate and a support plate, such that the support plate is disposed beneath the display back plate. The support plate may include an array of slots etched into the support plate, such that the array of slots may be used and positioned to divert an electromagnetic field on the support plate to redirect propagation of the surface current towards ground pins located on the display panel housing.
Abstract:
Electronic devices may include unshielded connectors that convey radio-frequency signals with external devices. A first electronic device may include transmitter circuitry that transmits radio-frequency signals to phase shifting circuitry. The phase shifting circuitry may pass the radio-frequency signals to a first conductive contact of a connector on the first device, may generate modified signals by applying a phase shift of approximately 180 degrees to the radio-frequency signals, and may provide the modified signals to a second conductive contact on the connector. To mitigate undesirable resonance and radiation at the connector, the connector may concurrently convey the radio-frequency signals and the modified signals to an external device over the first and second contacts while mating contacts on a connector of the external electronic device are in electrical contact with the first and second conductive contacts.
Abstract:
A wireless power system has a wireless power transmitting device and a wireless power receiving device. A clock signal may be provided to inverter circuitry in wireless power transmitting circuitry at a power transmission frequency. The clock signal may cause transistors in the inverter circuitry to turn on and off to create AC current signals through the wireless power transmitting coil. The clock signal may be processed to mitigate electromagnetic interference in the system.
Abstract:
An electronic device may include an inverter. The inverter may convert direct current (DC) power to alternating current (AC) power. The inverter may use a clock signal at a given frequency to output corresponding alternating current signals at the given frequency. The inverter may receive a dithered clock signal that is frequency dithered using a modulating signal. The dithered clock signal may have at least three different frequency levels during a repeated cycle of the modulating signal. The at least three different frequency levels may include a fundamental frequency, a first frequency that is lower than the fundamental frequency, and a second frequency that is higher than the fundamental frequency. The dithered clock signal may be, during the repeated cycle of the modulating signal, at the fundamental frequency for fewer total periods than at the first frequency and for fewer total periods than at the second frequency.
Abstract:
A wireless power system has a wireless power transmitting device and a wireless power receiving device. A clock signal may be provided to inverter circuitry in wireless power transmitting circuitry at a power transmission frequency. The clock signal may cause transistors in the inverter circuitry to turn on and off to create AC current signals through the wireless power transmitting coil. The clock signal may be processed to mitigate electromagnetic interference in the system.
Abstract:
Devices for mitigating or stopping noise or surface current on a display are provided. An electronic device including a display may include a display substrate, a mid-support plate that is adjacent to the display substrate, and a lower support plate that is adjacent to the mid-support plate. A space exists between the mid-support plate and the lower support plate. The mid-support plate includes one or more electromagnetic band gap (EBG) structures formed through the mid-support plate, one or more electromagnetic band gap structures mounted onto the mid-support plate, or both. The one or more electromagnetic band gap structures may mitigate or stop surface current flow across the display.
Abstract:
A wireless power system uses a wireless power transmitting device to transmit wireless power to wireless power receiving devices. The wireless power transmitting device has wireless power transmitting coils that extend under a wireless charging surface. Non-power-transmitting coils and magnetic sensors may be included in the wireless power transmitting device. During wireless power transfer operations, control circuitry in the wireless power transmitting device adjusts drive signals applied to the coils to reduce ambient magnetic fields. The drive signal adjustments are made based on device type information and other information on the wireless power receiving devices and/or magnetic sensor readings from the magnetic sensors. In-phase or out-of-phase drive signals are applied to minimize ambient fields depending on device type.
Abstract:
A wireless power system uses a wireless power transmitting device to transmit wireless power to wireless power receiving devices. The wireless power transmitting device has wireless power transmitting coils that extend under a wireless charging surface. Non-power-transmitting coils and magnetic sensors may be included in the wireless power transmitting device. During wireless power transfer operations, control circuitry in the wireless power transmitting device adjusts drive signals applied to the coils to reduce ambient magnetic fields. The drive signal adjustments are made based on device type information and other information on the wireless power receiving devices and/or magnetic sensor readings from the magnetic sensors. In-phase or out-of-phase drive signals are applied to minimize ambient fields depending on device type.
Abstract:
Methods and devices related to fabrication and utilization of multilayer capacitors presenting coaxially arranged electrode layers. The capacitors may be self-shielded against electromagnetic interference with neighboring components. The capacitors may have reduced losses from fringing effects when compared to conventional capacitors. The coaxial capacitors may be two-terminal multilayer ceramic capacitors (MLCC). The design of the capacitors may facilitate an improved relationship between the electric and magnetic fields generated by the capacitor within the dielectric in some embodiments. In some embodiments, the placement of the terminals may lead to a cancelation of mutual inductances between the electrodes. Terminations that facilitate the coupling of the capacitor to a circuit board, as well as methods for fabrication of the capacitors are also discussed.
Abstract:
Methods and devices related to fabrication and utilization of multilayer capacitors presenting coaxially arranged electrode layers. The capacitors may be self-shielded against electromagnetic interference with neighboring components. The capacitors may have reduced losses from fringing effects when compared to conventional capacitors. The coaxial capacitors may be two-terminal multilayer ceramic capacitors (MLCC). The design of the capacitors may facilitate an improved relationship between the electric and magnetic fields generated by the capacitor within the dielectric in some embodiments. In some embodiments, the placement of the terminals may lead to a cancelation of mutual inductances between the electrodes. Terminations that facilitate the coupling of the capacitor to a circuit board, as well as methods for fabrication of the capacitors are also discussed.