Abstract:
Electronic system for audio noise processing and noise reduction comprises: first and second noise estimators, selector and attenuator. First noise estimator processes first audio signal from voice beamformer (VB) and generate first noise estimate. VB generates first audio signal by beamforming audio signals from first and second audio pick-up channels. Second noise estimator processes first and second audio signal from noise beamformer (NB), in parallel with first noise estimator and generates second noise estimate. NB generates second audio signal by beamforming audio signals from first and second audio pick-up channels. First and second audio signals include frequencies in first and second frequency regions. Selector's output noise estimate may be a) second noise estimate in the first frequency region, and b) first noise estimate in the second frequency region. Attenuator attenuates first audio signal in accordance with output noise estimate. Other embodiments are also described.
Abstract:
A method performing automatic gain control (AGC) using an accelerometer in a headset starts with an accelerometer-based voice activity detector (VADa) generating a VADa output based on (i) acoustic signals received from at least one microphone included in a pair of earbuds and (ii) data output by at least one accelerometer that is included in the pair of earbuds. The at least one accelerometer detects vibration of the user's vocal chords. The headset includes the pair of earbuds. An AGC controller then performs automatic gain control (AGC) on the acoustic signals from the at least one microphone based on the VADa output. Other embodiments are also described.
Abstract:
Method for improving noise suppression for ASR starts with a microphone receiving an audio signal including speech signal and noise signal. In each frame for frequency band of audio signal, a noise estimator detects ambient noise level and generates noise estimate value based on estimated ambient noise level, variable noise suppression target controller generates suppression target value using noise estimate value and logistic function, a gain value calculator generates a gain value based on suppression target value and noise estimate value, and combiner enhances the audio signal by the gain value to generate a clean audio signal in each frame for all frequency bands. Logistic function models desired noise suppression level that varies based on ambient noise level. Variable level of noise suppression includes low attenuation for low noise levels and progressively higher attenuation for higher noise level. Other embodiments are also described.
Abstract:
A method performing automatic gain control (AGC) using an accelerometer in a headset starts with an accelerometer-based voice activity detector (VADa) generating a VADa output based on (i) acoustic signals received from at least one microphone included in a pair of earbuds and (ii) data output by at least one accelerometer that is included in the pair of earbuds. The at least one accelerometer detects vibration of the user's vocal chords. The headset includes the pair of earbuds. An AGC controller then performs automatic gain control (AGC) on the acoustic signals from the at least one microphone based on the VADa output. Other embodiments are also described.
Abstract:
An electronic device that can be worn by a user can include a processing unit and one or more sensors operatively connected to the processing unit. The processing unit can be adapted to determine an installation position of the electronic device based on one or more signals received from at least one sensor.
Abstract:
A method of improving voice quality in a mobile device starts by receiving acoustic signals from microphones included in earbuds and the microphone array included on a headset wire. The headset may include the pair of earbuds and the headset wire. An output from an accelerometer that is included in the pair of earbuds is then received. The accelerometer may detect vibration of the user's vocal chords filtered by the vocal tract based on vibrations in bones and tissue of the user's head. A spectral mixer included in the mobile device may then perform spectral mixing of the scaled output from the accelerometer with the acoustic signals from the microphone array to generate a mixed signal. Performing spectral mixing includes scaling the output from the inertial sensor by a scaling factor based on a power ratio between the acoustic signals from the microphone array and the output from the inertial sensor. Other embodiments are also described.
Abstract:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
Abstract:
A device implementing an automatic speech recognition triggering system includes at least one processor configured to receive first and second audio signals respectively corresponding to first and second microphones of a device. The at least one processor is further configured to generate, based on at least one of the first or second audio signals, a third audio signal corresponding to a voice beam directed to an expected position of a mouth of a user. The at least one processor is further configured to determine whether wind noise is present in at least one of the first, second, or third audio signals. The at least one processor is further configured to, based on determining whether wind noise is present, an audio signal from among the second or third audio signals, for a determination of whether at least one of the first or second audio signals corresponds to the user.
Abstract:
An automatic speech recognition (ASR) triggering system, and a method of providing an ASR trigger signal, is described. The ASR triggering system can include a microphone to generate an acoustic signal representing an acoustic vibration and an accelerometer worn in an ear canal of a user to generate a non-acoustic signal representing a bone conduction vibration. A processor of the ASR triggering system can receive an acoustic trigger signal based on the acoustic signal and a non-acoustic trigger signal based on the non-acoustic signal, and combine the trigger signals to gate an ASR trigger signal. For example, the ASR trigger signal may be provided to an ASR server only when the trigger signals are simultaneously asserted. Other embodiments are also described and claimed.
Abstract:
An electronic device that can be worn on a limb of a user can include a processing device and one or more position sensing devices operatively connected to the processing device. The processing device can be adapted to determine which limb of the user is wearing the electronic device based on one or more signals received from at least one position sensing device.