Abstract:
A method and system are described for determining the reliability of the communications between a portable electronic device and an access point (AP) before associating with the AP. In the described embodiments, a first probe request frame is transmitted to the AP at a first data rate, and a first probe response frame is received from the AP, wherein the first probe response frame is responsive to the first probe request frame. Then, a second probe request frame is transmitted to the AP at a second data rate, wherein the first data rate is lower than the second data rate. Then, the portable electronic device determines if a second probe response frame is received from the AP, wherein the second probe response frame is responsive to the second probe request frame. The portable electronic device then determines the reliability of the communications between the portable electronic device and the AP.
Abstract:
Automatically determining and alerting a user to available wireless networks. Initially, the method may automatically determine that one or more wireless networks are available to a wireless device at a location. The method may determine if the wireless device has been present at the first location for more than a threshold amount of time, e.g., based on periodic determination of the available wireless networks to the wireless device. Based on the wireless device being present at the first location for more than the threshold amount of time, an alert may be automatically displayed to the user on a display of the wireless device. The alert may indicate at least one wireless network of the one or more wireless networks at the first location. The wireless device may connect to wireless network indicated by the alert in response to user input.
Abstract:
One or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.
Abstract:
One or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.
Abstract:
One or more wireless stations may operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., without utilizing an intermediate access point. Scheduling of NAN ranging procedures may include a first wireless station sending first information, including first scheduling preferences and a first ranging role, to a second wireless station. The first wireless station receives second information, including second scheduling preferences and a second ranging role, from the second wireless station. The first wireless station may initiate the ranging procedure based on the scheduling preferences and ranging parameters. Alternatively, the second wireless station and may initiate the ranging procedure based on the scheduling preferences and ranging parameters.
Abstract:
In some embodiments, one or more wireless stations operate to configure direct communication with neighboring mobile stations, e.g., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to techniques for devices (e.g., NAN devices and/or AWDL devices) to detect asymmetric awareness amongst peers.
Abstract:
An apparatus and methods are provided for conducting wireless data communications, particularly real-time data communications, in a communication environment that includes a restricted channel (e.g., a channel subject to Dynamic Frequency Selection or DFS). Two or more mobile communication/computing devices (e.g., smart phones, tablet computers) participate in a peer-to-peer network and engage in data communications while one or more of them operate on the restricted channel (e.g., to maintain an infrastructure communication connection). Their channel sequences are configured to maximize the efficiency of the data communication while satisfying restrictions of the restricted channel or avoiding that channel, and only require them to monitor one beacon interval. One or more of the devices may strategically roam to the restricted channel or away from the restricted channel, depending on which action will provide greater communication throughput or efficiency.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, e.g., without utilizing an intermediate access point. Embodiments relate to scheduling of NAN ranging procedures, including to a first wireless station sending first information, including first scheduling preferences and a first ranging role, to a second wireless station. The first wireless device receives second information, including second scheduling preferences and a second ranging role, from the second wireless device. The first wireless station may initiate the ranging procedure based on the scheduling preferences and ranging parameters. Alternatively, the second wireless station and may initiate the ranging procedure based on the scheduling preferences and ranging parameters.
Abstract:
In some embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication between neighboring wireless stations, e.g., without utilizing an intermediate access point. Embodiments of the disclosure relate to NAN datapath configuration. The NAN datapath embodiments described herein provide a mechanism through which devices can communicate and provide services. Aspects of the datapath development include datapath scheduling, including datapath setup and scheduling attributes, scheduler rank management, and further NAN discovery. The datapath model may be implemented for unicast and multicast communication between wireless stations.
Abstract:
In one set of embodiments, one or more wireless stations operate to configure Neighbor Awareness Networking (NAN)—direct communication with neighboring wireless stations, i.e., direct communication between the wireless stations without utilizing an intermediate access point. Embodiments of the disclosure relate to reciprocating service between two or more wireless stations. The reciprocating service embodiments described herein provide a mechanism through which devices can participate in a same service instant.