Abstract:
A removable component for use with an earphone is disclosed. As an example, the removable component can be an ear tip. According to one aspect, an improved ear tip can be provided for use with a headphone. The ear tip is suitable for in-ear operation and can have a cosmetic deformable outer member. The deformable outer member can enable the ear tip to readily conform to a user's ear. The ear tip can also include an inner member to structurally support the outer member and to facilitate attachment to a headphone. Methods for forming such ear tips are also disclosed.
Abstract:
A portable electronic device including an outer case having a wall in which a transducer-associated acoustic hole is formed. An inner case may be positioned inside the outer case. The inner case can include an acoustic port that opens to the transducer-associated acoustic hole and a relief port that opens to the outer case. A transducer having a diaphragm facing the acoustic port of the inner case is mounted within the inner case. A valve is further positioned over the relief port. The valve is configured to reduce an impact of an incoming air burst on the diaphragm.
Abstract:
A transit request is initiated, which requests dispatch of a vehicle to a location of the electronic device. Information, including authentication information, is received and a communication channel is established with the vehicle.
Abstract:
A system may have lights produce illumination. A light may be provided with a collimated light source that produces collimated light. The collimated light source may use lenses or reflective optical elements to produce the collimated light. The light may have an array of light elements each of which emits a respective beam of the illumination. Each light element may have a preshaping lens that receives the collimated light and produces corresponding preshaped output light and an output lens that receives the output light from the preshaping lens and produces a corresponding beam of the illumination. An electrically adjustable shutter may be located between each preshaping lens and output lens to adjust the illumination between a low-beam pattern and high-beam pattern.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A system may have lights produce illumination. A light may be provided with a collimated light source that produces collimated light. The collimated light source may use lenses or reflective optical elements to produce the collimated light. The light may have an array of light elements each of which emits a respective beam of the illumination. Each light element may have a preshaping lens that receives the collimated light and produces corresponding preshaped output light and an output lens that receives the output light from the preshaping lens and produces a corresponding beam of the illumination. An electrically adjustable shutter may be located between each preshaping lens and output lens to adjust the illumination between a low-beam pattern and high-beam pattern.
Abstract:
A vehicle may have lights such as headlights. The lights may be moved using a positioner. Control circuitry in the vehicle may use sensor circuitry to monitor the environment surrounding the vehicle. The sensor circuitry may include one or more sensors such as a lidar sensor, radar sensor, image sensor, and/or other sensors to measure the shape of a surface in front of the vehicle and the location of the surface relative to the vehicle. These sensors and/or other sensors in the sensor circuitry also measure headlight illumination on the surface. Based on the known shape of the surface in front of the vehicle and the distance of the surface from the vehicle, the control circuitry can predict where a headlight should be aimed on the surface. By comparing predictions of headlight illumination on the surface to measurements of headlight illumination on the surface, the vehicle can determine how to move the headlight with the positioner to align the headlight.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.