Abstract:
A method and an apparatus that provide rewriting code to dynamically mask program data statically embedded in a first code are described. The program data can be used in multiple instructions in the first code. A code location (e.g. an optimal code location) in the first code can be determined for injecting the rewriting code. The code location may be included in two or more execution paths of first code. Each execution path can have at least one of the instructions using the program data. A second code may be generated based on the first code inserted with the rewriting code at the optimal code location. The second code can include instructions using the program data dynamically masked by the rewriting code. When executed by a processor, the first code and the second code can generate identical results.
Abstract:
Some embodiments provide for an improved method for performing AES cryptographic operations. The method applies a look up table operation that includes several operations embedded within look up tables. The embedded operations include a permutation operation to permute several bytes of AES state, a multiplication operation to apply a next round's protection to the AES state, an affine function and an inverse affine function to conceal the multiplication operation, and an inverse permutation operation to remove a previous round's protection. Some embodiments provide for an optimized method for efficiently performing such protected AES operations. The method alternates rounds of AES processing between software processing (e.g. processing by a CPU, performed according to software instructions) and hardware processing (e.g. processing by cryptographic ASIC).
Abstract:
Some embodiments provide a method for performing a block cryptographic operation that includes a plurality of rounds. The method receives a message that includes several blocks. The method selects a set of the blocks. The set has a particular number of blocks. The method applies a cryptographic operation to the selected set of blocks. A particular round of the cryptographic operation for a first block in the set is performed after a later round than the particular round for a second block in the set, while a different particular round for the first block is performed before an earlier round than the different particular round for the second block. In some embodiments, at least two rounds for the first block are performed one after the other without any intervening rounds for any other blocks in the set.
Abstract:
The fake cryptographic layer obfuscation technique can be used to lure an attacker into expending reverse engineering efforts on sections of code the attacker would normally ignore. To do this the obfuscation technique can identify sections of code that are likely to be of lesser interest to the attacker and disguise them as higher value sections. This can be achieved by transforming a lower value section of code to include code patterns, constants, or other characteristics known to exist in sections of code of higher value, such as cryptographic routines. To transform a code section, the obfuscation technique can use one or more program modifications including control flow modifications, constant value adjustments to simulate well-known cryptographic scalars, buffer extensions, fake characteristic table insertion, debug-like information insertion, derivation function-code generation linking, and/or cryptographic algorithm specific instruction insertion.
Abstract:
Some embodiments provide for an improved method for performing AES cryptographic operations. The method applies a look up table operation that includes several operations embedded within look up tables. The embedded operations include a permutation operation to permute several bytes of AES state, a multiplication operation to apply a next round's protection to the AES state, an affine function and an inverse affine function to conceal the multiplication operation, and an inverse permutation operation to remove a previous round's protection. Some embodiments provide for an optimized method for efficiently performing such protected AES operations. The method alternates rounds of AES processing between software processing (e.g. processing by a CPU, performed according to software instructions) and hardware processing (e.g. processing by cryptographic ASIC).
Abstract:
A method and an apparatus for receiving a first source code having a code block to update the first source code with multiple copies of the code block to protect against correlation attacks are described. The code block can perform one or more operations for execution based on the first source code. The operations can be performed via a random one of the copies of the code block. A second source code based on the updated first source code can be generated to be executed by a processor to produce an identical result as the first source code.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable storage media for obfuscating data based on a discrete logarithm. A system practicing the method identifies a clear value in source code, replaces the clear value in the source code with a transformed value based on the clear value and a discrete logarithm, and updates portions of the source code that refer to the clear value such that interactions with the transformed value provide a same result as interactions with the clear value. This discrete logarithm approach can be implemented in three variations. The first variation obfuscates some or all of the clear values in loops. The second variation obfuscates data in a process. The third variation obfuscates data pointers, including tables and arrays. The third variation also preserves the ability to use pointer arithmetic.