Abstract:
A method and device is provided for platform independent device communication by detecting a request at a processor-based device to perform a function, determining an external device corresponding to the request, retrieving a tag for the external device for performing a function corresponding to the request and generating a message implemented in XMPP, having embedded therein the tag, wherein the tag is essential at the external device for performing the function corresponding to the request. Receiving the message at a device, determining whether the message comprises a device message, retrieving a tag included in the message, wherein the tag corresponds to an executable command to perform a function and executing the tag to perform the function.
Abstract:
A method consistent with certain implementations involves in an audio system having an array of a plurality of loudspeakers and a stored speaker map identifying the geometric relationship between the plurality of loudspeakers and a listening position, identifying a location on the speaker map of a Source Origin of a sound; selecting a method of localizing the Source Origin from a plurality of methods of localizing the Source Origin utilizing the array of loudspeakers; and reproducing the sound emanating from the Source Origin using the selected method. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A method consistent with certain implementations involves at a listening position, capturing a plurality of photographic images with a camera of a corresponding plurality of loudspeakers forming part of an audio system; determining from the plurality of captured images, a geometric configuration representing a positioning of the plurality of loudspeakers connected to the audio system; and outputting the geometric configuration of the plurality of loudspeakers to the audio system. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
Circuits and methods for controlling a Power On Reset (POR) circuit in an Integrated Circuit (IC) are presented. In one embodiment, a circuit includes a fuse, test POR override circuitry, and latch enable circuitry. The test POR override circuitry is in electrical communication with the fuse and includes a latch. The output of the test POR override circuitry is selectable between a test POR signal and a first logic value based on the output of the latch. The latch enable circuitry, in communication with the test POR override circuitry, is configured to enable the loading of the latch with the first logic value when the fuse has been programmed and with a second logic value otherwise. In addition, the output of the test POR override circuitry and the output of the POR circuit are gated to generate a POR signal. Where the test POR override circuitry is enabled before the fuse is programmed to allow the testing of the IC during manufacturing. Once the fuse is programmed, the test POR override circuitry is disabled to protect the IC from outside access to the SRAM configuration using the test POR override circuitry.
Abstract:
A phase shift circuit that includes two, rather than four, delay chains and corresponding selectors is described. This provides a significant area savings and reduces the intrinsic delay of the phase shift circuit, which is particularly beneficial for embodiments in which there is no intrinsic delay matching. In one implementation, the phase shift circuit includes a first delay circuit and a matching delay circuit. The first delay circuit provides a first delay that includes a first intrinsic delay and a first intentional delay. The delay matching circuit provides a matching delay that matches the first intrinsic delay. In one implementation, the phase shift circuit also includes a second delay circuit to provide a second delay that includes a second intrinsic delay and second intentional delay, where the second intrinsic delay matches the first intrinsic delay and the second intentional delay is half as long as the first intentional delay.
Abstract:
A phase shift circuit that includes two, rather than four, delay chains and corresponding selectors is described. This provides a significant area savings and reduces the intrinsic delay of the phase shift circuit, which is particularly beneficial for embodiments in which there is no intrinsic delay matching. In one specific implementation, the phase shift circuit includes a first delay circuit and a matching delay circuit. The first delay circuit provides a first delay that includes a first intrinsic delay and a first intentional delay. The delay matching circuit provides a matching delay that matches the first intrinsic delay. In one specific implementation, the phase shift circuit also includes a second delay circuit to provide a second delay that includes a second intrinsic delay and second intentional delay, where the second intrinsic delay matches the first intrinsic delay and the second intentional delay is half as long as the first intentional delay. Matching the intrinsic delay of the first delay circuit allows for comparing its output against a delayed version of the input signal, rather than the input signal. As a result, Fmax, the maximum frequency of the input signal at which the phase shift circuit may operate, is not limited by the intrinsic delay or by Fmin, the minimum frequency of the input signal at which the phase shift circuit may operate.
Abstract:
A method consistent with certain implementations involves in an audio system having an array of a plurality of loudspeakers and a stored speaker map identifying the geometric relationship between the plurality of loudspeakers and a listening position, identifying a location on the speaker map of a Source Origin of a sound; selecting a method of localizing the Source Origin from a plurality of methods of localizing the Source Origin utilizing the array of loudspeakers; and reproducing the sound emanating from the Source Origin using the selected method. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A system, method, and computer program product determine when a user's mobile device has left a secured physical site, such as a house or office, without predefined site security settings being met, and responsively inform the user of any security anomalies. A predetermined distance threshold is compared with the distance between the mobile device, and a secured site. If the distance exceeds the threshold and a trigger event is detected, an alert is transmitted. The alert may be transmitted via the internet, and may be formatted as a text message, a phone vibration, a popup alert, a ringtone, an audio recording, a synthesized voice message, an image, and a video. The alert may be delivered via a speaker in a vehicle or a mobile phone, and an alert format is selected according to whether these are in use.
Abstract:
A consumer electronics device has a video display, a processor controlling the display, and a computer readable storage medium accessible to the processor. The storage medium bears instructions executable by the processor to cause a user interface (UI) to appear on the display, where the UI includes plural alpha-numeric elements. Further, each element includes plural alpha-numeric characters arranged in a row. Even further, each element is characterized by a color, a row orientation, and a size, where at least the size is established at least in part by a frequency of selection of an element. Thus, at least a first element has a first color, first size, and first row orientation and at least a second element has a second color, second size, and second row orientation respectively different from the first color, first size, and first row orientation.