Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include at least a single piece housing. The single piece housing can be machined from a single billet of material, such as a billet of aluminum. The single piece housing can include ledges with a surface receiving a trim bead and a cover. Corner brackets can be attached to the single piece housing to improve the damage resistance of the housing.
Abstract:
An electronic device may be provided with a housing in which display structures are mounted. Additional input-output devices such as a track pad may also be mounted in the housing. These input-output devices may include components such as touch sensors and force sensors for gathering input from a user. The display structures may include a display such as a flexible organic light-emitting diode display or a liquid crystal display that can present visual information to the user. To provide the user with tactile output, an output device such as a display or track pad may be provided with electroactive polymer structures, electromagnetic actuators, and other tactile output devices. The tactile output devices may provide protrusions, indentations, selectively stiffened and softened areas, and other tactile output for a user.
Abstract:
An electronic device may have a display mounted in a housing. The display may have layers such as polarizer layers, a color filter layer, and a thin-film transistor layer. Display layers such as color filter layers and thin-film-transistor layers may have glass substrates. Notches or other openings may be formed in the layers of a display. For example, a notch with a curved chamfered edge may be formed in a lower end of a thin-film-transistor layer. A component such as a button may overlap the notch. Structures such as sensors, cameras, acoustic components, and other electronic components, buttons, communications path structures such as flexible printed circuit cables and wire bonding wires, and housing structures may be received within a display layer notch.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include at least a single piece housing. The single piece housing including a plurality of steps. The plurality of mounting steps are formed by at least removing a preselected amount of housing material at predetermined locations on the interior surface. At least some of the mounting steps are used to mount at least some of the plurality of internal operating components housing.
Abstract:
An electronic device may be provided with a housing in which display structures are mounted. Additional input-output devices such as a track pad may also be mounted in the housing. These input-output devices may include components such as touch sensors and force sensors for gathering input from a user. The display structures may include a display such as a flexible organic light-emitting diode display or a liquid crystal display that can present visual information to the user. To provide the user with tactile output, an output device such as a display or track pad may be provided with electroactive polymer structures, electromagnetic actuators, and other tactile output devices. The tactile output devices may provide protrusions, indentations, selectively stiffened and softened areas, and other tactile output for a user.
Abstract:
Disclosed herein are methods and systems for providing haptic output on an electronic device. In some embodiments, the electronic device includes an actuator configured to move in a first direction. The electronic device also includes a substrate coupled to the actuator. When the actuator moves in the first direction, the substrate or a portion of the substrate, by virtue of being coupled to the actuator, moves in a second direction. In some implementations, the movement of the substrate is perpendicular to the movement of the actuator.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include a single piece housing and a display module. The display module can include a protective top glass cover that is bonded to a plastic display frame and surrounded by a seal frame. The display module can also include a display panel and its associated circuitry suspended from the display frame below the protective glass cover. The display module is coupled to the single piece housing using mounting clips in a manner that allows the display module to move relative to the single piece housing during an impact event. The plastic display frame can include inserts that provide structural support near openings in the single piece housing.
Abstract:
An electronic device may include a display having an active area and an inactive area. The display may include a cover layer and an array of pixels that emit light through the cover layer in the active area. An opaque masking layer may be formed on an inner surface of the cover layer in the inactive area. A touch sensor may include touch sensor electrodes under the opaque masking layer in the inactive area to detect touches near electronic components that are mounted in the inactive area. Operation of the electronic components may be controlled based on signals from the touch sensor in the inactive area. The touch sensor may be formed from capacitive touch sensor electrodes. The capacitive touch sensor electrodes may be formed on the same substrate as an adjacent electronic component or may be formed as an extension of an existing touch sensor in the display.
Abstract:
A portable electronic device that provides audio sound output from multiple internal speakers to a common output audio opening in a housing of the portable electronic device is disclosed. In one embodiment, the multiple internal speakers are provided in close proximity to one another, such as adjacent to one another, and serve to produce audio sound pertaining to different audio channels. The sound (i.e., pressure waves) produced by each of the internal speakers is directed into a respective acoustic chamber and output via the output audio opening in the housing. Accordingly, the acoustic chambers for the multiple internal speakers can each direct their audio sound output to the same output audio opening in the housing. The respective acoustic chambers can be formed adjacent to one another with a structural barrier serving to separate the distinct acoustic chambers.
Abstract:
An electronic device may be provided with antenna structures that are embedded in a dielectric such as plastic. The plastic may be molded over the antenna structures using molding equipment. Antenna structures may be embedded in molded plastic structures such as plastic electronic device housing structures. The plastic electronic device housing structures may form housing structures such as housing wall structures. The antenna structures may be embedded within the housing wall structures in the vicinity of an exterior surface of the housing wall structures. Embedded antenna structures may also be mounted under other dielectric structures such portions of a display cover layer.