Abstract:
Technology is disclosed for a vehicle-capable user equipment (vUE) operable for sensing-based distributed scheduling 5 of event-based mission critical (MC) vehicle-to everything (V2X) traffic. The vUE can sense sidelink control information (SCI) for semi persistent scheduling (SPS) resource selection from one or more SCI messages received in one or more physical sidelink control channels (PSCCHs) from one or more neighboring vUEs. The vUE can identify: a number of MC resources to transmit event10 based MC data with a selected number of repetitions within a latency budget, wherein the MC resources include one or more of MC-SCI or MC data with the selected number of repetitions; and a number of available resources to transmit event-based MC data within the latency budget. The vUE can select revocable resources from one or more scheduled low-priority resources based on the sensed SCI for SPS resource selection.
Abstract:
A 3GPP LTE protocol enhancement realizes the full benefit of discontinuous reception (DRX) in Long Term Evolution networks by coordinating and aligning DRX operations for conserving power and timing overhead. A dual connectivity enabled User Equipment (UE) comprising a processor and transceiver is configured to align DRX configuration between counterpart Evolved Node Bs (eNB)s, wherein counterpart eNBs are a Master eNB (MeNB) and a Secondary eNB (SeNB) simultaneously connected to the UE, communicate system frame timing and system frame number (SFN) information between the counterpart eNBs, align DRX start offset (drxStartOffset) values for the counterpart eNBs according to the communicated system frame timing and SFN information to compensate for offsets in system frame timing, and allow the start of a DRX ON duration at specific frame or sub-frame times determined by the drxStartOffset values, after the expiration of a DRX inactivity timer.
Abstract:
Techniques for random access (RA) in a cellular internet-of-things (CIOT) are discussed. An example apparatus configured to be employed within a User Equipment (UE), comprises a receiver circuitry, a processor, and transmitter circuitry. The receiver circuitry is configured to receive RA resource allocation information via one of a system information message or a downlink control information (DCI) message. The processor is operably coupled to the receiver circuitry and configured to: select a RA preamble sequence; generate a payload; and spread the payload via a spreading sequence. The transmitter circuitry is configured to transmit, based on the RA resource allocation information, a RA message comprising the RA preamble sequence and the payload, wherein the RA message is transmitted in a RA slot. The receiver circuitry is further configured to receive a response comprising a device identity of the UE and one of an uplink (UL) grant or a RA reject message.
Abstract:
To report feedback information regarding a wireless channel, a mobile station determines whether a predefined condition is satisfied. In response to determining that the predefined condition is satisfied, feedback information regarding an individual one of plural subbands of the wireless channel is included in a first report to be sent to a base station. In response to determining that the predefined condition is not satisfied, aggregate feedback information regarding the plural subbands is included in a second report to be sent to the base station.
Abstract:
To report feedback information regarding a wireless channel, a mobile station determines whether a predefined condition is satisfied. In response to determining that the predefined condition is satisfied, feedback information regarding an individual one of plural subbands of the wireless channel is included in a first report to be sent to a base station. In response to determining that the predefined condition is not satisfied, aggregate feedback information regarding the plural subbands is included in a second report to be sent to the base station.
Abstract:
To report feedback information regarding a wireless channel, a mobile station determines whether a predefined condition is satisfied. In response to determining that the predefined condition is satisfied, feedback information regarding an individual one of plural subbands of the wireless channel is included in a first report to be sent to a base station. In response to determining that the predefined condition is not satisfied, aggregate feedback information regarding the plural subbands is included in a second report to be sent to the base station.
Abstract:
To perform wireless communications in a closed loop multiple input, multiple output (MIMO) system, a feedback data structure is communicated over a wireless channel between a first wireless node and a second wireless node, where the feedback data structure contains indicators identifying coding to be applied by the second wireless node on signaling communicated between the second wireless node and the first wireless node, where the information in the feedback data structure is based on wireless channel conditions detected at the first wireless node. The indicators identify different codings to be used for different corresponding bands in the wireless channel.
Abstract:
A 3GPP LTE protocol enhancement realizes the full benefit of discontinuous reception (DRX) in Long Term Evolution networks by coordinating and aligning DRX operations for conserving power and timing overhead. A dual connectivity enabled User Equipment (UE) comprising a processor and transceiver is configured to align DRX configuration between counterpart Evolved Node Bs (eNB)s, wherein counterpart eNBs are a Master eNB (MeNB) and a Secondary eNB (SeNB) simultaneously connected to the UE, communicate system frame timing and system frame number (SFN) information between the counterpart eNBs, align DRX start offset (drxStartOffset) values for the counterpart eNBs according to the communicated system frame timing and SFN information to compensate for offsets in system frame timing, and allow the start of a DRX ON duration at specific frame or sub-frame times determined by the drxStartOffset values, after the expiration of a DRX inactivity timer.
Abstract:
A base station can obtain channel quality conditions for mobile devices in a scheduling interval and identify a channel quality, a target transmission scheme, and a transmission power level for each of the mobile devices. The base station can assign a unique orthogonal CDMA code and can force the mobile devices to transmit K repeated bursts of uplink data such that each of the mobile devices has a rotated phase shift based on the unique orthogonal CDMA code assigned to each of the mobile devices with each of the mobile devices multiplexed on a same physical channel using an overlaid CDMA operation. The base station can process K repeated bursts that are multiplexed on the same physical channel using the overlaid CDMA operation. The base station can separate the mobile devices according to the unique orthogonal CDMA code and use IQ accumulation according to combine the K repeated bursts.
Abstract:
To perform wireless communications in a closed loop multiple input, multiple output (MIMO) system, a feedback data structure is communicated over a wireless channel between a first wireless node and a second wireless node, where the feedback data structure contains indicators identifying coding to be applied by the second wireless node on signaling communicated between the second wireless node and the first wireless node, where the information in the feedback data structure is based on wireless channel conditions detected at the first wireless node. The indicators identify different codings to be used for different corresponding bands in the wireless channel.