Abstract:
An electronic device may be provided with a display. The display may include display layers characterized by an active area and backlight structures that provide backlight to the active area. To accommodate components such as a button, an edge portion of a light guide plate in the backlight structures that does not overlap the active area is bent out of the plane of the light guide plate. The bent edge portion of the light guide plate may be formed by molding clear plastic in a die or by bending a flexible sheet of clear polymer. Flared structures may be formed on the flexible sheet of clear polymer to help guide light from light-emitting diodes into the flexible sheet of clear polymer. The flared structures may be formed by applying resin coating layers to the flexible sheet of clear polymer.
Abstract:
Electronic devices may include displays. A display may include backlight components that provide backlight illumination for the display. Backlight components may include a light guide plate that distributes light from a light source across the display. A plastic display chassis may be used to support display layers and backlight components. A light blocking material such as a layer of metal or opaque coating material may be formed on a surface of the plastic display chassis and may be used to reduce light leakage from the backlight components to the exterior of the electronic device. A metal barrier structure may be formed on a surface of the support structure and may be used to ground a conductive display layer to a conductive support structure such as a metal display chassis or a metal housing member. The plastic display chassis may be insert molded around a light barrier structure.
Abstract:
Electronic devices may include displays. A display may include backlight components such as a light guide plate that distributes light from a light source across the display. The light source may include a plurality of light-emitting diodes mounted on a printed circuit substrate. A portion of the light guide plate may be attached to the printed circuit substrate using adhesive. The adhesive may be a supported adhesive that includes a lining of reflective material. A reflective coating such as a layer of white coverlay may be formed on the surface of the printed circuit substrate and may be configured to reflect light into the light guide plate. The reflective coating may serve as a solder mask. The printed circuit substrate may be attached to a metal display chassis using adhesive. A shim may be used to raise the height of the light source relative to the printed circuit substrate.
Abstract:
Electronic devices may include displays having backlight structures and display layers. The display layers may include alignment features. The backlight structure may include alignment features. The alignment features on the backlight structures may include transparent portions of the backlight structures. The alignment features on the display layers may include alignment marks that are visible through the transparent portions of the backlight structures. The transparent portions of the backlight structures may include openings that extend from a first surface of the backlight structures to an opposing second surface of the backlight structures. The openings may be filled by transparent members formed from plastic or glass. The transparent members may include additional alignment marks. The transparent members may include lensing portions that magnify the alignment marks on the display layers when viewed through the lensing portions.
Abstract:
Electronic devices may include displays. A display may include backlight structures that generate light and display layers that generate images using the generated light. An electronic device may include an opaque flexible printed circuit that is wrapped around one or more edges of the backlight structures. The opaque flexible printed circuit may prevent light from the backlight structures from reaching other electronic components or escaping from the device. The opaque flexible printed circuit may include signal lines that communicate signals between a printed circuit board and the display. The opaque flexible printed circuit may be a layer of the printed circuit board that extends from an edge of the printed circuit board. The printed circuit board may include an additional flexible extended printed circuit layer that wraps around a surface of the printed circuit board and forms a portion of a conductive shield over that surface.
Abstract:
Coatings for magnetic materials, such as rare earth magnets, are described. The coatings are designed to reduce or prevent the release of one or both of nickel and cobalt from the coatings or from the underlying magnetic material. The coatings are designed to resist corrosion and release of nickel and cobalt when exposed to moist conditions. The coatings are also designed to be robust enough to withstand damage due to scratch forces. In some embodiments, the coatings include multiple layers of one or of metal and non-metal materials. The coated magnets are well suited for use in the manufacture of wearable consumer products.
Abstract:
Electronic devices may include displays having backlight structures that include optical films. The optical films may help guide light from the backlight structures to display layers that generate display images using the light. The optical films may be attached together at one or more locations. The optical films may be attached to a structural member of the backlight structures. The structural member may be formed along each edge of the optical films and prevent the optical films from sliding within the display. Each optical film may be designed to expand to a common lateral size when the display is operated at a display operating temperature. The optical films may each include an elongated opening such as a slot through which a pin can be placed to partially constrain the movement of the optical films while allowing the optical films to expand or contract under changing thermal conditions in the display.
Abstract:
An efficient magnetic assembly having magnetic regions is formed by applying a magnetic field from a magnetizer to predefined portions of a monolithic substrate corresponding to the magnetized regions. In the described embodiment, the magnetic field is of sufficient strength and is applied for a sufficient amount of time to magnetize the corresponding portions of the monolithic substrate. A distance between at least two adjacent magnetized regions corresponding to a neutral zone is determined and based upon the determination, the monolithic substrate is shifted an amount less than the distance corresponding to the neutral zone and the magnetic field is re-applied to at least the shifted portion of the monolithic substrate.
Abstract:
Electronic devices may include displays. A display may include a display unit that includes an array of display pixels and a backlight unit that provides backlight illumination for the display pixels. An automated alignment system may be used to align the display unit to the backlight unit. The alignment system may include a camera, a control unit, and computer-controlled positioners. The control unit may gather alignment feature location information from the display unit and the backlight unit using the camera. The control unit may determine a centroid of the backlight unit based on the alignment feature location information. The alignment feature location information may include the respective locations of openings in the backlight unit. The control unit may operate computer-controlled positioners to align the display unit with respect to the backlight unit using the centroid and to subsequently attach the display unit to the backlight unit.
Abstract:
Electronic devices may include displays. A display may include backlight components such as a light guide plate that distributes light from a light source across the display. The light source may include a plurality of light-emitting diodes mounted on a printed circuit substrate. A portion of the light guide plate may be attached to the printed circuit substrate using adhesive. The adhesive may be a supported adhesive that includes a lining of reflective material. A reflective coating such as a layer of white coverlay may be formed on the surface of the printed circuit substrate and may be configured to reflect light into the light guide plate. The reflective coating may serve as a solder mask. The printed circuit substrate may be attached to a metal display chassis using adhesive. A shim may be used to raise the height of the light source relative to the printed circuit substrate.