Abstract:
If a user loses an electronic device that has the capability to conduct financial transactions, the user may report that the electronic device is lost using a lost-device software application to a management electronic device associated with a provider of the electronic device. In response to receiving this information, a disabling command is sent to a payment network associated with the financial account of the user to temporarily disable use of the electronic device to conduct the financial transactions. In particular, the electronic device may include a secure element that stores a payment applet for a financial account, and the disabling command may disable a mapping from a virtual identifier for the financial account to a financial primary account number. Subsequently, if the user finds the electronic device, the user may re-enable the capability (and, thus, the mapping) by providing authentication information to the electronic device.
Abstract:
A device for wireless terminal authentication may include at least one processor configured to receive, from a wireless terminal device, a request for user information, the request comprising a certificate corresponding to the wireless terminal device. The at least one processor may be further configured to verify the certificate based at least in part on a public key stored on the electronic device. The at least one processor may be further configured to, when the certificate is verified, determine whether the certificate indicates that the wireless terminal device is authorized to receive the requested user information. The at least one processor may be further configured to transmit, to the wireless terminal device, the requested user information when the certificate indicates that the wireless terminal device is authorized to receive the requested user information.
Abstract:
Methods for operating a portable electronic device to conduct a mobile payment transaction at a merchant terminal are provided. The electronic device may verify that the current user of the device is indeed the authorized owner by requiring the current user to enter a passcode. If the user is able to provide the correct passcode, the device is only partly ready to conduct a mobile payment. In order for the user to fully activate the payment function, the user may have to supply a predetermined payment activation input such as a double button press that notifies the device that the user intends to perform a financial transaction in the immediate future. The device may subsequently activate a payment applet for a predetermined period of time during which the user may hold the device within a field of the merchant terminal to complete a near field communications based mobile payment transaction.
Abstract:
Techniques are disclosed relating to authenticate a user with a mobile device. In one embodiment, a computing device includes a short-range radio and a secure element. The computing device reads, via the short-range radio, a portion of credential information stored in a circuit embedded in an identification document issued by an authority to a user for establishing an identity of the user. The computing device issues, to the authority, a request to store the credential information, the request specifying the portion of the credential information. In response to an approval of the request, the computing device stores the credential information in the secure element, the credential information being usable to establish the identity of the user. In some embodiments, the identification document is a passport that includes a radio-frequency identification (RFID) circuit storing the credential information, and the request specifies a passport number read from the RFID circuit.
Abstract:
Methods for operating a portable electronic device to conduct a mobile payment transaction at a merchant terminal are provided. The electronic device may verify that the current user of the device is indeed the authorized owner by requiring the current user to enter a passcode. If the user is able to provide the correct passcode, the device is only partly ready to conduct a mobile payment. In order for the user to fully activate the payment function, the user may have to supply a predetermined payment activation input such as a double button press that notifies the device that the user intends to perform a financial transaction in the immediate future. The device may subsequently activate a payment applet for a predetermined period of time during which the user may hold the device within a field of the merchant terminal to complete a near field communications based mobile payment transaction.
Abstract:
Techniques are disclosed relating to authenticate a user with a mobile device. In one embodiment, a computing device includes a short-range radio and a secure element. The computing device reads, via the short-range radio, a portion of credential information stored in a circuit embedded in an identification document issued by an authority to a user for establishing an identity of the user. The computing device issues, to the authority, a request to store the credential information, the request specifying the portion of the credential information. In response to an approval of the request, the computing device stores the credential information in the secure element, the credential information being usable to establish the identity of the user. In some embodiments, the identification document is a passport that includes a radio-frequency identification (RFID) circuit storing the credential information, and the request specifies a passport number read from the RFID circuit.
Abstract:
Systems, methods, and computer-readable media for managing near field communications during a low power management mode of an electronic device are provided that may make credentials of a near field communication (“NFC”) component appropriately secure and appropriately accessible while also limiting the power consumption of the NFC component and of other components of the electronic device.
Abstract:
A system for provisioning credentials onto an electronic device is provided. The system may include a payment network subsystem, a service provider subsystem, and one or more user devices that can be used to perform mobile transactions at a merchant terminal. The user device may communicate with the service provider subsystem in order to obtained commerce credentials from the payment network subsystem. The user device may include a secure element and a corresponding trusted processor. The trusted processor may generate a random authorization number and inject that number into the secure element. Mobile payments should only be completed if the random authorization number on the secure element matches the random authorization number at the trusted processor. The trusted processor may be configured to efface the previous random authorization number and generate a new random authorization number when detecting a potential change in ownership at the user device.