Abstract:
A host device communicating with a plurality of accessory devices transmits audio data packets via a broadcast channel to the plurality of accessory devices. When one of the plurality of accessory devices determines an audio data packet has not been received, the accessory device sends a negative-acknowledgement signal (NACK) via a unicast channel. The NACK indicates that the at least one of the accessory devices did not receive at least one audio data packet. The host device retransmits the at least one audio data packet indicated as not being received via the broadcast channel to the plurality of accessory devices. Other aspects are also described and claimed.
Abstract:
A device may store a plurality of different coexistence profiles for different possible communication scenarios. The device may be initialized with a first one of the coexistence profiles, and may operate to dynamically switch to different ones of the coexistence profiles based on current conditions. Each coexistence profile may include a number of coexistence related parameters stored as a plurality of data structures. During device use, the device may dynamically select an appropriate coexistence profile based on the current communication conditions, such as Wi-Fi RSSI, Bluetooth RSSI, and/or the number of Wi-Fi and/or Bluetooth devices with which communication is currently occurring, among other possible factors. The coexistence profile is selected to provide the best possible Wi-Fi and/or Bluetooth output performance based on current conditions. The device may repeatedly dynamically select different coexistence profiles as conditions change, e.g., may select different coexistence profiles on a second or even millisecond basis.
Abstract:
Techniques for routing communication to a common audio output device connected multiple audio signal source devices are disclosed. For each of audio signal source devices, a set of inputs are assessed. The set of inputs can include: an operational state of the audio signal source device, an interaction with the audio signal source device, an audio-producing application being executed by the audio signal source device, or a degree of user interaction with the audio-producing application. At a point in time, an audio routing score is generated for each of the audio signal source devices according to a weighted calculation of the set of inputs based on the assessing. Finally, an audio signal routing decision is made, to route an audio signal from one of the audio signal source devices to the audio output device, based on the audio routing score for each of the audio signal source devices.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A source device can transmit initial streaming content to a playback device (e.g., wireless ear buds) using first settings and measure playback performance of the content at a plurality of times. The measured performance values can relate to a quality of communication of the initial streaming content between the source device and the playback device, e.g., relating to packet loss, retransmission rates and patterns, fluctuations in a playback (jitter) buffer, and/or other values. The measured performance values can be used to determine one or more second settings to be used for a playback of subsequent streaming content between the source device and the playback device. In this manner, each source device can account for variations in communication behavior specific to a user (e.g., due to differences in body type as electromagnetic waves travel through the body when a source device is in a pocket).
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
The wireless earphone (1) comprises a housing (2) having a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet (5) at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver (6) is inside the bud portion. Electronic circuitry (7,24) inside the housing (2) includes a wireless communications interface (4) to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery (3) as a power source for the electronic circuitry is located inside a cavity of the stem portion.
Abstract:
A device may store a plurality of different coexistence profiles for different possible communication scenarios. The device may be initialized with a first one of the coexistence profiles, and may operate to dynamically switch to different ones of the coexistence profiles based on current conditions. Each coexistence profile may include a number of coexistence related parameters stored as a plurality of data structures. During device use, the device may dynamically select an appropriate coexistence profile based on the current communication conditions, such as Wi-Fi RSSI, Bluetooth RSSI, and/or the number of Wi-Fi and/or Bluetooth devices with which communication is currently occurring, among other possible factors. The coexistence profile is selected to provide the best possible Wi-Fi and/or Bluetooth output performance based on current conditions. The device may repeatedly dynamically select different coexistence profiles as conditions change, e.g., may select different coexistence profiles on a second or even millisecond basis.