Abstract:
Disclosed herein are systems, devices, and processes that use millimeter wave radar or other remote sensing to enhance mobility applications. Obstacles may be detected using remote sensing. Acceleration of a mobility apparatus may be controlled based on detection of the obstacle. The controlling may be performed based on characteristics of the obstacle, including location, type of obstacle, and/or trajectory of the obstacle.
Abstract:
Devices, systems and processes for the detection of unsafe cabin conditions that provides a safer passenger experience in autonomous vehicles are described. One example method for enhancing passenger safety includes capturing at least a set of images of one or more passengers in the vehicle, determining, based on the set of images, the occurrence of an unsafe activity in an interior of the vehicle, performing, using a neural network, a classification of the unsafe activity, and performing, based on the classification, one or more responsive actions.
Abstract:
Devices, systems and processes for a dynamic microphone system that enhances the passenger experience in autonomous vehicles are described. One example method for enhancing a passenger experiences includes generating, using an artificial intelligence algorithm, a plurality of filters based on a plurality of stored waveforms previously recorded by each of one or more passengers and a plurality of recordings of one or more noise sources, capturing voice commands from at least one of the one or more passengers inside the autonomous vehicle, generating voice commands with reduced distortion based on processing the voice commands using the plurality of filters, and instructing, based on the voice commands with reduced distortion, the autonomous vehicle to perform one or more actions.
Abstract:
Disclosed herein are systems, devices, and processes that use millimeter wave radar or other remote sensing to enhance mobility applications. Obstacles may be detected using remote sensing. Acceleration of a mobility apparatus may be controlled based on detection of the obstacle. The controlling may be performed based on characteristics of the obstacle, including location, type of obstacle, and/or trajectory of the obstacle.
Abstract:
Systems and methods are disclosed for applying neural networks in resource-constrained environments. A system may include a sensor located in a resource-constrained environment configured to generate sensor data of the resource-constrained environment. The system may also include a first computing device not located in the resource-constrained environment configured to produce a neural network structure based on the sensor data. The system may further include a second computing device located in the resource-constrained environment configured to provide the sensor data as input to the neural network structure. The second computing device may be further configured to determine a state of the resource-constrained environment based on the input of the sensor data to the neural network structure.
Abstract:
Systems and methods are disclosed for applying neural networks in resource-constrained environments. A system may include a sensor located in a resource-constrained environment configured to generate sensor data of the resource-constrained environment. The system may also include a first computing device not located in the resource-constrained environment configured to produce a neural network structure based on the sensor data. The system may further include a second computing device located in the resource-constrained environment configured to provide the sensor data as input to the neural network structure. The second computing device may be further configured to determine a state of the resource-constrained environment based on the input of the sensor data to the neural network structure.
Abstract:
Method and devices for processing signals based on sound and haptic profiles are provided. A reproduction device can request a sound profile or haptic profile based on user information, device information, media metadata or a combination. The sound or haptic profiles can be customized and shared across multiple devices. User interfaces allow for the input of information that allows the reproduction device or a server in the cloud to select, modify, store, and analyze sound profiles. Deeper analysis allows for the improvement of sound and haptic profiles for individuals and groups. Intensity scoring of a music library can also be conducted.
Abstract:
Method and devices for processing audio signals based on intensity of an audio file are provided. A user interface is provided that allows for the intuitive navigation of audio files based on their intensity. A screen of the user interface is displayed, containing a plurality of selection regions. One or more selection regions display a selection option in the selection region to select a group of audio files associated with a similar intensity score. An intensity score of an audio file can be manually changed or assigned by a microprocessor.
Abstract:
Method and devices for testing a headphone with increased sensation are provided. The headphone can filter and amplify low frequency audio signals, which are then sent to a haptic device in the headphone. The haptic device can cause bass sensations at the top of the skull and at both ear cups. The testing system can evaluate the haptic and acoustic sensations produced by the headphone to evaluate if they have been properly assembled and calibrate the headphones if necessary.
Abstract:
Method and devices for testing a headphone with increased sensation are provided. The headphone can filter and amplify low frequency audio signals, which are then sent to a haptic device in the headphone. The haptic device can cause bass sensations at the top of the skull and at both ear cups. The testing system can evaluate the haptic and acoustic sensations produced by the headphone to evaluate if they have been properly assembled and calibrate the headphones if necessary.