Abstract:
Disclosed are protein ligands comprising an immunoglobulin heavy chain variable (VH) domain and an immunoglobulin light chain variable (VL) domain, wherein the proteins bind a complex comprising an MHC and a peptide, do not substantially bind the MHC in the absence of the bound peptide, and do not substantially bind the peptide in the absence of the MHC, and the peptide is a peptide fragment of gp100, MUC1, TAX, or hTERT. Also disclosed are methods of using and identifying such ligands.
Abstract:
A recombinant isolated antibody and a pharmaceutical composition containing same, capable of specifically recognizing an MHC-peptide complex with an affinity in a nanomolar range and of inducing apoptosis in cancer or pathogen infected cells is provided. Also provided are method for treating and diagnosing cancer or pathogen infection in a subject using the recombinant isolated antibody of the present invention.
Abstract:
A composition-of-matter comprising an antibody or antibody fragment including an antigen-binding region capable of specifically binding an antigen-presenting portion of a complex composed of a human antigen-presenting molecule and an antigen derived from a pathogen is disclosed.
Abstract:
A recombinant polypeptide and nucleic acid constructs capable of expressing the recombinant polypeptide are provided. The recombinant polypeptide comprises a chimeric polypeptide including an antigenic peptide being capable of binding a human MHC class I, a functional human β-2 microglobulin and a functional human MHC class I heavy chain.
Abstract:
An antibody fragment and methods of utilizing same are provided. The antibody fragment includes an antigen binding region capable of binding an extracellular portion of a P-glycoprotein thereby at least partially inhibiting drug efflux activity in multidrug resistant cells.
Abstract:
An isolated molecule which comprises an antibody specifically bindable with a binding affinity below 20 nanomolar, preferably below 10 nanomolar, to a human major histocompatibility complex (MHC) class I being complexed with a HLA-restricted antigen and optionally further comprises an identifiable or therapeutic moiety conjugated to the antibody.
Abstract:
An isolated molecule which comprises an antibody specifically bindable with a binding affinity below 20 nanomolar, preferably below 10 nanomolar, to a human major histocompatibility complex (MHC) class I being complexed with a HLA-restricted antigen and optionally further comprises an identifiable or therapeutic moiety conjugated to the antibody.
Abstract:
An immuno-molecule which comprises a soluble human MHC class I effector domain; and an antibody targeting domain which is linked to the soluble human MHC class I effector domain, methods of making same and uses thereof.
Abstract:
This invention provides protease-activatable Pseudomonas exotoxin A-like (“PE-like”) proproteins. The proproteins comprise (1) a cell recognition domain of between 10 and 1500 amino acids that binds to a cell surface receptor; (2) a modified PE translocation domain comprising an amino acid sequence sufficiently homologous to domain II of PE to effect translocation to a cell cytosol upon proteolytic cleavage, wherein the translocation domain comprises a cysteine-cysteine loop that comprises a protease activatable sequence cleavable by a protease and wherein the cysteine-cysteine loop is substantially un-activatable by furin; (3) optionally, a PE Ib-like domain comprising an amino acid sequence up to 1500 amino acids; (4) a cytotoxicity domain comprising an amino acid sequence substantially homologous to domain III of PE, the cytotoxicity domain having ADP-ribosylating activity; and (5) an endoplasmic reticulum (“ER”) retention sequence. The invention also provides methods of using these proproteins for killing target cells.
Abstract:
Provided are antibodies comprising an antigen recognition domain capable of binding an MHC molecule being complexed with a human immunodeficiency virus (HIV) peptide, wherein the antibody does not bind the MHC molecule in an absence of the complexed peptide, and wherein the antibody does not bind the peptide in an absence of the MHC molecule. Also provided are methods of using same for diagnosing HIV infection and treating AIDS.