Abstract:
A cup for a master cylinder coming into contact with its primary piston or its secondary piston and subjected to the pressure of the brake fluid of the primary chamber and of the secondary chamber. The cup has two large grooves bordered: by a rib between the heel and the first groove, by a rib between the first groove and the second groove, by a rib between the second groove and the small grooves, these ribs being in protrusion relative to the cylindrical surface of the heel in the mounted position of the cup in order to separate the heel from the surface of the piston and form, between the heel and the surface of the piston, a gap with a film of brake fluid. Master cylinder notably a tandem master cylinder fitted with such cups.
Abstract:
A primary piston composed of a skirt and an intermediate back wall having a rear face receiving the servobrake thrustrod and a forward face for the telescoping rod and the spring pushing the secondary piston. The front of the skirt has longitudinal grooves open in front and closed in the rear. The thickness of the skirt beneath the grooves and the part of the skirt between two successive grooves in the peripheral direction foam a front face enabling the principal piston to push the secondary piston. The principal piston is made of a single piece of plastic material.
Abstract:
A master cylinder includes at least one primary piston and one secondary piston installed in the bore hole of the master cylinder, which pistons are used to create pressure. The primary piston has a body of molded plastic material and is equipped with a functional metallic insert which has the shape of a spherical cap capable of accommodating a push rod.
Abstract:
A primary piston is described of molded plastic and equipped with a functional metallic insert and at least one groove. The primary piston is installed in a master cylinder comprising at least the primary piston and a secondary piston, these being mounted in the bore hole of a master cylinder. These pistons can create pressure in a primary pressure chamber and a secondary pressure chamber, respectively, due to the action of a push rod on the primary piston.
Abstract:
The invention relates to a master cylinder (1) with reduced free travel (23). Current master cylinders have a free travel during the displacement of a piston (6) in a bore (5) of a master cylinder body (3). Such a free travel may be reduced with the aid of a frustoconical portion (24) in the piston, an orifice (14) for communication of hydraulic fluid being situated on said inclined wall, a gap (26) between the inclined wall and an inner wall (12) of the bore allowing a passage for hydraulic fluid capable of filling a pressure chamber (4). However, such inclined walls create a change in the slope of an outer wall (29) of the piston, this change being able to cause a separation of an inner lip (19) of a sealing cup (17). To prevent this separation, the invention provides that the inclined wall forms a convex rounded surface (32).
Abstract:
A pneumatic brake booster 1 comprising: a sealed structure 3 comprising a rigid casing 11 forming a funnel 19 furnished with an opening and a movable wall 13 dividing the sealed structure 3 into a low-pressure chamber 25 and a working chamber 27, a pneumatic piston 5 comprising a boss 31 fixedly attached to the movable wall 13 and mounted so as to slide in the funnel opening, a valve element 33 housed in the boss 31 and a seal 35 positioned between the boss 31 and the funnel 19, an input rod 7 and an output rod 9 coupled on either side of the pneumatic piston 5, and a return spring 37 to return the pneumatic piston 5 to a rest position, the return spring 37 being placed in the low-pressure chamber 25 between an internal surface 45 of the rigid casing and the pneumatic piston 5, and a force sensor 39 placed in the low-pressure chamber 25 and subjected to the pressure variations of the return spring 37.
Abstract:
A pneumatic brake booster 1 comprising: a sealed structure 3 comprising a rigid casing 11 forming a funnel 19 furnished with an opening and a movable wall 13 dividing the sealed structure 3 into a low-pressure chamber 25 and a working chamber 27, a pneumatic piston 5 comprising a boss 31 fixedly attached to the movable wall 13 and mounted so as to slide in the funnel opening, a valve element 33 housed in the boss 31 and a seal 35 positioned between the boss 31 and the funnel 19, an input rod 7 and an output rod 9 coupled on either side of the pneumatic piston 5, and a return spring 37 to return the pneumatic piston 5 to a rest position, the return spring 37 being placed in the low-pressure chamber 25 between an internal surface 45 of the rigid casing and the pneumatic piston 5, and a force sensor 39 placed in the low-pressure chamber 25 and subjected to the pressure variations of the return spring 37.