Abstract:
A transmissive optical recording medium includes: a first recording layer including a recording material capable of fixing record of information; a second recording layer including a recording material capable of fixing record of information; and a polarizing plate between the first recording layer and the second recording layer.
Abstract:
A hologram-recording method including recording a reflection-type volume hologram onto an optical recording medium by irradiating the optical recording medium with a modulated beam obtained by spatially modulating a laser beam and a diffused beam obtained by diffusing the modulated beam, coaxially but from different sides of the optical recording medium, respectively. The invention provides a hologram-recording method, an optical recording medium, and a hologram-recording device that enables on-demand recording of a reflection-type volume hologram which reliably prohibits forgery or alteration with a simple device configuration.
Abstract:
There is provided a hologram recording medium having: a recording layer at which a hologram can be recorded by illumination of writing light; and a protective layer provided on the recording layer in order to protect the recording layer, a water absorbency of the protective layer being less than or equal to 0.01%.
Abstract:
There is provided a data playback method including: acquiring first image data by illuminating reference light for reading onto an optical recording medium on which a hologram has been recorded by Fourier transforming and simultaneously illuminating reference light and signal light expressing digital data as a light-and-dark image, and detecting an inverse Fourier-transform image of diffracted light which is diffracted by the recorded hologram; acquiring second image data, which is a reversal image of the first image data, by generating combined light by combining the diffracted light and a dc component whose phase is different than a phase of a dc component of the signal light included in the diffracted light, and detecting an inverse Fourier-transform image of the combined light; and computing a difference in luminance for each pixel of the light-and-dark image, by carrying out computing processing by using the first and second image data.
Abstract:
There is proposed a hologram recording method that includes: generating signal light by superimposing a periodic intensity distribution or phase distribution on an intensity distribution of light that expresses binary digital data as a light/dark image; Fourier transforming the signal light; illuminating Fourier transformed signal light and reference light simultaneously on an optical recording medium; and recording the signal light as a hologram.
Abstract:
A hologram-recording material, including a photoresponsive molecule, a reactive molecule having an intrinsic birefringence, and a photopolymerization initiator that accelerates polymerization and/or crosslinking of the reactive molecule having an intrinsic birefringence, a content of the photopolymerization initiator being in a range of less than about 0.1 wt % relative to the hologram-recording material, and, a content of the reactive molecule having an intrinsic birefringence being in a range of about 30 to about 80 wt % relative to the hologram-recording material.
Abstract:
A shredder that shreds a recording medium which includes, on a surface thereof, an image forming portion and a holographic memory portion in which data is recorded. The shredder includes a data destroying unit that destroys at least the data recorded in the holographic memory portion and a shredding unit that shreds the entire recording medium. Thus, when a recording medium to which has been added a holographic memory portion in which useful information is recorded is to be discarded, the data(information) recorded in the holographic memory portion can be safely destroyed so that the data can no longer be read.
Abstract:
A hologram recording apparatus includes a light source for irradiating coherent light, light separator for separating the coherent light into light for reference beam and light for signal beam, optical path changer for changing an optical path of each light separated by the light separator so that the reference beam and the signal beam may be irradiated simultaneously onto an optical recording medium, a spatial light modulator disposed in the optical path of the light for the signal beam for modulating the light for the signal beam in accordance with a supplied recording signal to create signal beam for recording a hologram, and diffused light irradiator for irradiating diffused light simultaneously with the reference beam at least onto an area of the optical recording medium where the reference beam is irradiated.
Abstract:
Carbon nanotube structures are provided, in which the networks with a desired area and volume, where the carbon nanotubes are electrically or magnetically connected, are formed and the method for easily manufacturing the carbon nanotube structures with less carbon nanotube structures. Carbon nanotube devices are also provided, to which the useful carbon nanotube structures mentioned above are applied. A method for manufacturing carbon nanotube structures includes the steps of applying carbon nanotubes to a low-viscosity dispersion medium to obtain a high-viscosity dispersing liquid which includes carbon nanotubes, and forming a network of the carbon nanotubes having electrical and/or magnetic connections therebetween by removing the low-viscosity dispersion medium from the high-viscosity dispersed liquid.
Abstract:
The present invention provides an image formation device including: an image reading section which reads an image from an image formation member, at which image formation member the image is formed and a hologram recording medium is mounted, associated information relating to the image being stored as a hologram in the hologram recording medium; an information acquisition section which acquires the stored associated information from the hologram recording medium; an image processing section which processes the image read by the image reading section in accordance with the associated information acquired by the information acquisition section; and an image formation section which forms an image processed by the image processing section.