摘要:
When a motor vehicle is not in motion, an algorithm for establishing the initial zero point offset values for a yaw rate sensor as may be used in motor vehicle software control systems. The initial values are the manufactured values and are downloaded into the vehicle ECU at the time of the manufacture of the ECU. When the vehicle is waken at the vehicle assembly and the ignition is first turned on, the initial actual value of the zero point offset is stored both as a maximum and minimum value. At subsequent adjusting times when the vehicle is not moving, but the ignition is on, the spread between the maximum and minimum values are checked. If the spread becomes greater than a desired predetermined spread, the value, be it the maximum or minimum value reflects the measured value and the other value is adjusted to be within the desired spread. When the ignition is turned off and the vehicle is not moving, the zero point offset maximum and minimum values are stored in memory. The mean value is calculated to provide the new zero point offset value of the yaw rate sensor when the vehicle ignition is then turned on and the vehicle is not moving.
摘要:
A control system and method for a hybrid vehicle involve controlling a hybrid powertrain comprising an engine and a transmission having one or more electric motors and not comprising a decoupling mechanism therebetween, detecting an operating condition where the transmission is in neutral and the vehicle is moving at a speed less than a low speed threshold, and in response to detecting the operating condition: determining a desired propulsive torque of the powertrain, determining an actual propulsive torque at the driveline, calculating a torque difference between the actual and desired propulsive torques over a period, comparing the calculated torque difference to a first movement threshold, and when the calculated torque difference exceeds the first movement threshold, applying an electric parking brake (EPB) of the vehicle.
摘要:
A technique includes receiving, at a controller of a vehicle, the controller including one or more processors, a first request to calibrate a park lock system of the vehicle. The calibration can include commanding, by the controller, a first actuator to move a second actuator to maximum engagement/disengagement positions indicating maximum engagement/disengagement of a park pawl with/from a park gear of a transmission. The calibration can include determining, at the controller, full engagement/disengagement positions for the second actuator based on the maximum engagement/disengagement positions. The controller can then control the engagement/disengagement of the park lock system using the full engagement/disengagement positions for the second actuator, respectively.
摘要:
A technique includes receiving, at a controller of a vehicle, the controller including one or more processors, a first request to calibrate a park lock system of the vehicle. The calibration can include commanding, by the controller, a first actuator to move a second actuator to maximum engagement/disengagement positions indicating maximum engagement/disengagement of a park pawl with/from a park gear of a transmission. The calibration can include determining, at the controller, full engagement/disengagement positions for the second actuator based on the maximum engagement/disengagement positions. The controller can then control the engagement/disengagement of the park lock system using the full engagement/disengagement positions for the second actuator, respectively.
摘要:
Methods and systems of processing sensor signals to determine motion of a motor shaft are disclosed. This disclosure relates to the processing of sequences of pulses from a sensor for computing the motion of an electric motor output shaft. Furthermore, this disclosure relates to the processing of two sequences of pulses from sensor outputs, which may be separated by only a few electrical degrees, to compute the motion of an electrical motor output shaft while using a limited bandwidth controller. Motor shaft direction, displacement, speed, phase, and phase offset may be determined from processing the sensor signals.
摘要:
Methods and systems of processing sensor signals to determine motion of a motor shaft are disclosed. This disclosure relates to the processing of sequences of pulses from a sensor for computing the motion of an electric motor output shaft. Furthermore, this disclosure relates to the processing of two sequences of pulses from sensor outputs, which may be separated by only a few electrical degrees, to compute the motion of an electrical motor output shaft while using a limited bandwidth controller. Motor shaft direction, displacement, speed, phase, and phase offset may be determined from processing the sensor signals.
摘要:
The present invention involves a method for initial synchronization of steering wheel and a road wheels in a steer-by-wire system of a vehicle when the system is first powered. The method includes providing a steering wheel control system and a road wheel control system. The method further includes sensing relative angles and the absolute angles of the steering wheel, road wheel, and right road wheel. The method further includes generating an augmented steering wheel angle, an augmented left road wheel angle, and an augmented right road wheel angle based on the relative angle and initial value of the absolute angles of the steering wheel and road wheels. The method further includes using the augmented steering wheel angle as a feedback signal to the steering wheel control system and the augmented left and right road wheel angles feedback signals to the road wheels control system. The method further includes controlling the steering wheel and the road wheels to perform initial synchronization of the steering wheel and the road wheels, thereby allowing the vehicle to be operable during the initial synchronization.
摘要:
A method for controlling a vehicle, the vehicle having a steer by wire and a brake by wire system is disclosed. The method includes sensing a yaw rate, a steering wheel rate of rotation, and a throttle position. Further, the method includes comparing the yaw rate, steering wheel rate of rotation, and the throttle position to a thresholds. Thereafter, a determination is made as to whether the yaw rate, the steering wheel rate, and the throttle position is greater than, or less than the respective thresholds. An operating mode of the vehicle is changed from a nominal control mode to a performance control mode when the yaw rate is greater than a first threshold yaw rate and less than the second threshold yaw rate, steering wheel rate of rotation is greater than the threshold steering wheel rate of rotation, and the throttle position is greater than the threshold throttle position.
摘要:
For a motor vehicle 10, a method for generating a map of a vehicle's dynamic steering ratio as a function of vehicle velocity and yaw rate. The steering ratio accounts for vehicle system compliance during dynamic maneuvers. The mapping of the steering ratio is used in an algorithm to estimate the vehicle's steering wheel angle while the vehicle is in a dynamic maneuver such as a turning maneuver. This estimation is based on the front wheel steer angles that are derived from the yaw rate and longitudinal velocity and the steering ratio.
摘要:
A misalignment detection system (12) for steering system of an automotive vehicle (10) includes a controller (14) coupled to a velocity sensor (18), and a yaw rate sensor (20). The controller is also coupled to a memory (16) that is used to store a steering ratio memory map and a historic steering wheel angle. The controller (14) determines a base steering wheel angle when the vehicle velocity is at a predetermined velocity. The base steering wheel angle is a function of the vehicle velocity, the yaw rate, and the steering ratio. The controller compares the current steering wheel angle with a historic steering wheel angle to determine an error. An indicator (22) may be provided to the vehicle operator to signal the presence of the misalignment of the steering system.