Abstract:
A spectroscope comprises an incident slit 12, a collimator lens type optical system 14 that makes the light rays having passed through the incident slit 12 parallel light rays, a reflection type diffraction grating 16 that receives the parallel light rays and, according to the wavelength, outputs these light rays at different angles, a condenser lens type optical system 14 that condenses the output light from the diffraction grating 16, and two-dimensional detector 16 having a two-dimensional light-receiving surface that detects the light rays that have been condensed by the condenser lens type optical system. The collimator lens type optical system and the condenser lens type optical system are disposed so that the angle 2γ defined between the optical axis of the collimator lens type optical system and the optical axis of the condenser lens type optical system may be acute. The condenser lens type optical system is disposed so that the distance between itself and the diffraction grating may be shorter than the distance between the collimator lens type optical system and the diffraction grating. A normal line vector at the central portion of the reflection surface of the diffraction grating may be directed, from a bisector of the angle defined between the optical axis of the collimator lens type optical system and the optical axis of the condenser lens type optical system, toward a side where the collimator lens type optical system is disposed.
Abstract:
An object of the invention is to realize an optical spectrum analyzer capable of performing high-speed waveform sweep. The invention is to make improvements to an optical spectrum analyzer for measuring a spectrum of light to be measured by collimating light to be measured by collimator means, spectroscopically separating the collimated light incident from the collimator means according to an incident angle by a diffraction grating, and detecting the light spectroscopically separated by the diffraction grating by a photodetector via a slit. The device is characterized by including an acoustooptic deflector provided between the collimator means and the diffraction grating for deflecting the collimated light to be measured and changing the incident angle on the diffraction grating.
Abstract:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
The invention features an optical medium for calibrating UV absorbance detectors, methods for making such an optical medium, and methods for calibrating UV absorbance detectors using such a medium. The optical calibration medium includes a gel-sol silica glass monolith with a rare-earth dopant therein. The rare-earth dopant exhibits at least one spectral feature in at least the far UV range. The constituents of the gel-sol silica glass monolith are selected so the rare-earth doped sol-gel glass monolith exhibits a transmittance in the far UV range so each distinct spectral feature of the rare-earth dopant in the far UV range is discernable. The transmittance in a particular embodiment is at least about 50% at about 250 nm. The rare earth materials selected for use as dopants are those exhibiting a wide range of spectral features, preferably over a range from about 190 nm to about 700 nm and more particularly exhibit at least one distinct spectral feature in the range from about 190 nm to about 300 nm. In a specific embodiment, the rare-earth dopant includes atoms of erbium, having spectral features in a range from about 190 nm to about 650 nm and a distinguishable far UV spectral feature at about 257 nm.
Abstract:
A method and apparatus for measuring characteristics of a single-wavelength optical signal constituting part of a wavelength division multiplexed (WDM) optical signal is provided. The WDM optical signal is adjustably diffracted to select the single-wavelength optical signal. An optical-to-electrical conversion is performed. An electrical sampling signal representing the selected single-wavelength optical signal is generated by one of (a) optically sampling the selected single-wavelength optical signal to generate an optical sampling signal on which the optical-to-electrical conversion is performed, and (b) electrically sampling an electrical signal generated by performing the optical-to-electrical conversion on the selected single-wavelength optical signal.
Abstract:
An optical system having a first order spectral range that is usable in an optical spectrum analyzer receives an broadband optical test signal and a optical calibration signal and couples the optical signals via two optically isolated paths to separate optical detectors. First and second pairs of optical fibers, with each pair having an input fiber and an output fiber, are positioned in a focal plane of a collimating optic that has an optical axis. The fiber pairs are symmetrically positioned on either side of the optical axis with the input fibers positioned on one side of the optical axis and the output fibers positioned on the opposite side of the optical axis. The input fibers receive the optical test signal and the optical calibration signal. The output optical fibers are coupled to first and second optical detectors. An optical calibration source generates second order or greater spectral lines that fall within the first order spectral range of the optical system. A diffraction grating receives the optical test signal and the optical calibration signal from the collimating optic and separates the first order spectral components of the broadband optical test signal and passes the second order or greater spectral lines of the optical calibration signal. The first optical detector that is responsive to the first order spectral components of the optical test signal receives the optical test signal from the collimating optic and converts the optical test signal to an electrical signal. A second optical detector that is responsive to the second order or greater spectral lines of the optical calibration signal concurrently receives the optical calibration signal from the collimating optic and converts the calibrations signal to an electrical signal.
Abstract:
Performing high-resolution determination of the relative shift of the spectral properties of a biosensor. The shift in the resonance peak of the biosensor is indicative of the amount of material bound to the surface of the biosensor. A preferred biosensor is a Guided Mode Resonant Filter Biosensor (GMRFB). In one aspect of the invention, curve fitting is used to determine the relative location of the spectrum of the unexposed biosensor with respect to those spectra that are altered (e.g., shifted) by the presence of materials bound to the surface of the biosensor. In an alternative embodiment, the cross correlation function is used to detect spectral peak offsets between a reference spectrum and a spectrum measured from an exposed biosensor. In yet another alternative, maximal likelihood estimation techniques are used to determine the spectral shift or offs.
Abstract:
Disclosed are photometric methods and devices for determining optical pathlength of liquid samples containing analytes dissolved or suspended in a solvent. The methods and devices rely on determining a relationship between the light absorption properties of the solvent and the optical pathlength of liquid samples containing the solvent. This relationship is used to establish the optical pathlength for samples containing an unknown concentration of analyte but having similar solvent composition. Further disclosed are methods and devices for determining the concentration of analyte in such samples where both the optical pathlength and the concentration of analyte are unknown. The methods and devices rely on separately determining, at different wavelengths of light, light absorption by the solvent and light absorption by the analyte. Light absorption by the analyte, together with the optical pathlength so determined, is used to calculate the concentration of the analyte. Devices for carrying out the methods particularly advantageously include vertical-beam photometers containing samples disposed within the wells of multi-assay plates, wherein the photometer is able to monitor light absorption of each sample at multiple wavelengths, including in the visible or UV-visible region of the spectrum, as well as in the near-infrared region of the electromagnetic spectrum. Novel photometer devices are described which automatically determine the concentration of analytes in such multi-assay plates directly without employing a standard curve.
Abstract:
An optical demultiplexer has an optical fiber, a single collimator lens, a diffraction grating, and an array of photodetectors. A light beam emitted from the optical fiber is demultiplexed by the collimator lens and the diffraction grating into light beams, and the light beams are focused by the collimator lens as beam spots deformed due to an aberration of an optical system of the optical demultiplexer onto the photodetectors. The photodetectors are arranged to accommodate and detect all the deformed focused beam spots. The array of photodetectors comprises a linear array of photodetectors or a matrix of photodetectors.