Abstract:
A multispectral imaging device for satellite observation utilizing “push broom” scanning over an observed area centered on one or more wavelengths which can be electrically controlled to produce a filtering function wavelength band, thus obviating the need for conventional stacking.
Abstract:
A hyper-spectral imaging system comprises imaging foreoptics (1020) to focus on a scene or object of interest (1010) and transfer the image of said scene or object (1010) onto the focal plane of a spatial light modulator (1030), a spatial light modulator (1030) placed at a focal plane of said imaging foreoptics (1020), an imaging dispersion device (1040) disposed to receive an output image of the spatial light modulator (1030), and an image collecting device disposed to receive the output of the imaging dispersion device (1040).
Abstract:
The invention relates to a device for the positioning of optical elements with retractable stop enabling accurate positioning of an optical element selected among a plurality of optical elements, including a stand (1); a turret fitted with a element holder and a disc (4), said disc (4) being a ratchet wheel having a peripheral surface (5) fitted with a plurality of blocking means (6), each blocking means (6) corresponding to an optical element, a motor (7) and a crash stop (9) bearing against the peripheral surface of the disc (5). According to the invention the stop (9) contains an anti-friction element (13) in contact with the peripheral surface (5) of the ratchet wheel so that the retractable stop (9) moves according to the contour of the peripheral surface (5) of the ratchet wheel without any friction.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator. An encoder spectrograph may be used wherein the first optics comprises a diffraction grating that is optimized for an annular-shaped intercept between the dispersed image and the radiation filters on a modulator.
Abstract:
An encoder spectrograph is used to analyze radiation from one or more samples in various configurations. The radiation is analyzed by spatially modulating the radiation after it has been dispersed by wavelength or imaged along a line. Dual encoder spectrographs may be used to encode radiation using a single modulator. An EPIR analyzer employs orthogonal encoded components having substantially identical modulation frequencies, which may allow for the multiplexing of up to twice as many encoded components.
Abstract:
The present invention is directed to method and apparatus for measuring the spectral characteristics of an object from a formed object generated input signal. The method comprises the steps of directing the input signal onto a diffraction grating. Diffracted signals are directed to a resonant mirror assembly for sequentially focusing a select diffracted signal. From that focused select diffracted signal, a spectral characteristic of said object is determined. Each said spectral characteristic is associated with each corresponding focused select diffracted signal and the associated signals are published. The apparatus is an improved spectrometer comprising a fiber cable assembly for receiving an object generated input signal and a diffraction grating. A resonant mirror assembly sequentially focuses a select diffracted signal, a sensor sensing which diffracted signal has been focused from the diffraction grating. An analyzer coupled with the sensor determines a spectral characteristic of the object from said select diffracted signal.
Abstract:
The present invention is based on the knowledge that the advantages of a moveable dispersive element with regard to the simple detector element and the adjustability of the measurement range and the resolution can also be used in a miniaturization of a spectrometer, when the dispersive element is operated generally in resonance instead by a quasi-static drive. A proposed spectrometer comprises a vibratably suspended dispersive element for spectrally decomposing a light beam, whose spectral distribution is to be determined, into spectral components, a means for putting the vibratably suspended dispersive element into a vibration with a frequency, which is in such a ratio to the natural frequency of the vibratably suspended dispersive element that a resonance amplification of the voltage of the dispersive element occurs, and a detector for detecting a spectral component of the light beam.
Abstract:
An auto-tracking spectrophotometer has a moveable look-ahead sensor for scanning at least a portion of a color matrix. The look-ahead sensor finds a portion of the color matrix for measurement by an optical system. The optical system for measuring the color matrix is then guided using the information provided by the look-ahead sensor.
Abstract:
The present invention is based on the knowledge that the advantages of a moveable dispersive element with regard to the simple detector element and the adjustability of the measurement range and the resolution can also be used in a miniaturization of a spectrometer, when the dispersive element is operated generally in resonance instead by a quasistatic drive. A proposed spectrometer comprises a vibratably suspended dispersive element for spectrally decomposing a light beam, whose spectral distribution is to be determined, into spectral components, a means for putting the vibratably suspended dispersive element into a vibration with a frequency, which is in such a ratio to the natural frequency of the vibratably suspended dispersive element that a resonance amplification of the voltage of the dispersive element occurs, and a detector for detecting a spectral component of the light beam.
Abstract:
A spectral image measurement apparatus comprises: a spectral element array; a spectral element drive section for driving the elements; an inlet-side optical system for guiding a light to the element array; a detection-side optical system for forming an image with a diffracted light output from the element array; and an array sensor for detecting the diffracted light through the detection-side optical system. The element array includes: a substrate; and a plurality of micro-electrically-driven mechanical spectral elements arranged two-dimensionally on the substrate, wherein each of the elements comprises a diffraction grating having a diffraction surface, the diffraction grating being pivotably supported on the substrate; wherein each of the elements generates spectra from a light entering the diffraction surface by applying an electric field to the diffraction grating to tilt the diffraction grating; and wherein each of tilt angles of the diffraction gratings is capable of being set individually.