Abstract:
Disclosed is an apparatus and method for segment routing using a remote forwarding adjacency identifier. In one embodiment, a first node in a network receives a packet, wherein the packet is received with a first segment-ID and another segment ID attached thereto. The first node detaches the first and the other segment IDs from the packet. Then the first node attaches a first label to the packet. Eventually, the first node forwards the packet with the attached first label directly to a second node in the network. In one embodiment, the other segment ID corresponds to a forwarding adjacency or tunnel label switched path between the first node and another node.
Abstract:
In one embodiment, a device in a network receives a packet that includes a forwarding label for a service in a service chain. The packet encapsulates a service chain header for the service chain. The device swaps the forwarding label for the service in the packet for a reserved label that identifies the packet as encapsulating the service chain header. The device forwards the packet with the reserved label to the service.
Abstract:
MPLS segment routing is disclosed. In one embodiment, a first core router generates a first data structure that maps first portcodes to respective identities of first neighbor routers or respective first links, wherein the first portcodes identify respective first ports of the first core router, and wherein the first ports are coupled to the first neighbor routers, respectively, via the first links, respectively. The first core router generates and transmits a first link-state packet, wherein the first link-state packet comprises an identity of the first core router and the first data structure.
Abstract:
A method, apparatus, and computer readable medium are disclosed. In one embodiment of the method, a packet and a segment ID stack is received at a first segment routing enabled node. The segment ID stack includes a plurality of segment IDs, one or which is a first area-segment ID that identifies a first area of a subdivided segment routing network. An egress interface of the first segment routing enabled node is selected based on the first area-segment ID. Thereafter, the packet is forwarded via the selected egress interface.
Abstract:
An example method for segment routing based wide area network (WAN) orchestration in a network environment is provided and includes monitoring a segment routing (SR) enabled WAN environment in at least near real-time by a path computation element (PCE) located outside the WAN, receiving an event notification at the PCE, and performing traffic engineering using SR to reroute traffic off shortest paths. In one embodiment, where a current state of the WAN is not pre-computed, performing traffic engineering comprises optimizing routes to remove violation of any utilization policies, deploying the optimized routes in the WAN, re-optimizing routes for other parameters, and further deploying the re-optimized routes in the WAN. In another embodiment, performing traffic engineering comprises optimizing routes to remove violation of any utilization policies and for other parameters, and deploying the optimized routes in the WAN. In another embodiment, performing traffic engineering comprises deploying optimized routes in the WAN.
Abstract:
An apparatus and method for path creation element driven dynamic setup of forwarding adjacencies and explicit path. In one embodiment of the method, a node receives an instruction to create a tunnel between the node and another node. The node creates or initiates the creation of the tunnel in response to receiving the instruction, wherein the tunnel comprises a plurality of nodes in data communication between the node and the other node. The node maps a first identifier (ID) to information relating to the tunnel. The node advertises the first ID to other nodes in a network of nodes.
Abstract:
Various techniques can be used to advertise adjacency segment identifiers (IDs) within a segment routing (SR) network. For example, a method, performed by a first node, can involve identifying an adjacency segment between a first node and a second node; assigning an identifier to the adjacency segment; and sending an Intermediate-System-to-Intermediate-System (IS-IS) hello (IIH) message to another node. The adjacency advertisement includes the identifier. If the adjacency segment is part of a LAN, the IIH message can be sent to a designated node that aggregates adjacency segment ID advertisements for the other nodes on the LAN.
Abstract:
A method is provided in one example embodiment and includes receiving a request to create a path through a network, wherein the path originates on a first network device and terminates on the second network device; identifying a first controller associated with the first network device, wherein the first controller proxies control plane functions for the first network device; identifying a second controller associated with the second network device, wherein the second controller proxies control plane functions for the second network device; and computing the path using the first controller as a source and the second controller as a destination. The first controller installs the computed path on the first network device and the second controller installs the computed path on the second network device.
Abstract:
An apparatus and method for enabling interoperability of segment routing (SR) enabled nodes and LDP enabled nodes in a network domain. In one embodiment, the method may include mapping a first node identifier (ID) to a first segment ID in memory, wherein the first node ID uniquely identifies a first node within a network domain, and wherein the first node is not SR enabled. A message is generated and subsequently transmitted directly or indirectly to another node within the network domain, wherein the message comprises the first node ID mapped to the first segment ID, and wherein the other node is SR enabled.
Abstract:
In one embodiment, techniques are provided to generate a Border Gateway Protocol-Link State (BGP-LS) advertisement message comprising information configured to indicate topological information associated with a Layer 0 (L0) network, where the topological information includes information for connectivity within the L0 network that is available to a Layer 3 (L3) network. The advertisement message is sent to a node in the L3 network. The message sent from the L0 network is received at the node in the L3 network. The topological information in the message is analyzed in order to determine connections available to the L3 network, yet within the L0 network. A connection request is sent from the node in the L3 network to the L0 network and connections between the nodes in L3 network are established using available connections in the L0 network.