Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a master node (MN) may determine to reconfigure a user equipment (UE) from an existing configuration to a full configuration for a dual connectivity (DC) mode. To perform the reconfiguration, the MN may transmit a signal (e.g., a modification request message) indicating the full configuration to a secondary node (SN). The SN may identify the full configuration reconfiguration triggered at the MN based on the signal. The SN may transmit an acknowledgment message to the MN including a secondary cell group (SCG) configuration for the SN complying with the full configuration. The MN may indicate this SCG configuration as part of the full configuration to the UE (e.g., in a radio resource control (RRC) connection reconfiguration message). The UE may perform a reconfiguration process and communicate with the MN and the SN according to the full configuration.
Abstract:
This disclosure provides systems, methods, apparatuses and computer-readable medium for wireless communication. In some aspects, a user equipment (UE) may receive, from a first base station (BS) associated with a fifth generation New Radio (5G NR) radio access technology (RAT), a command of mobility from the 5G NR RAT to a second RAT. The UE may determine that the command of mobility is for voice fallback. The UE may transmit, to a second BS associated with the second RAT and based at least in part on determining that the command of mobility is for voice fallback, a radio resource control (RRC) connection request communication for attempting to communicatively connect with the second BS for voice fallback.
Abstract:
A user equipment (UE) may identify a bearer (e.g., a default bearer) and request establishment of a second bearer (e.g., a high priority bearer) for use in streaming downlink data from, for example, an application server. The UE may determine a status of a playout buffer and select the first bearer or the second bearer for use in streaming the downlink data associated with the application based on the status of the playout buffer. For example, the first bearer may be used be used by default, and the second bearer may be selected if the amount of data in the playout buffer does not satisfy (e.g., is below) a threshold. In some cases, each bearer may be associated with a transmission control protocol (TCP) port associated with a TCP connection. In some cases, each bearer may be associated with different Internet protocol (IP) address.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications. In some aspects, a mobile device may receive configuration information, associated with configuring a state of the mobile device, via a unicast transmission, and may access a header-compressed broadcast transmission using the configuration information received via the unicast transmission. In some aspects, a network entity may transmit configuration information, to facilitate decompression of a header-compressed broadcast transmission, via a unicast transmission to a mobile device of a plurality of mobile devices, and may transmit the header-compressed broadcast transmission to the plurality of mobile devices in accordance with the configuration information.
Abstract:
A UE maintains continuity of reception of a service of interest that is available over eMBMS broadcast service and unicast. The UE receives the service of interest over eMBMS from a network within a first MBSFN area supporting the eMBMS broadcast service. The UE receives at least one MBSFN threshold from the network and at least one MBSFN measurement from the network. The UE switches from reception of the eMBMS broadcast from the first MBSFN area to one of reception through unicast or reception through a second MBSFN area supporting the eMBMS broadcast service, based on the at least one MBSFN threshold and the at least one MBSFN measurement.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that performs a PTT/PTX call setup for communication via MBMS. In a first configuration, the UE sets up a unicast bearer with an eNB, and sends group call setup signaling to the eNB while setting up the unicast bearer. In a second configuration, the UE sets up a unicast bearer with an eNB, and receives group call setup signaling from the eNB while setting up the unicast bearer. In a third configuration, the UE receives a group page while in an RRC idle state, and receives group call setup signaling based on information in the group page.
Abstract:
Techniques are described for managing secure content transmissions in a content delivery network (CDN). A method for handling content requests at an edge node device of a CDN includes receiving a request to access content of a website from a user equipment (UE) over a wireless network; obtaining, in response to receiving the request, an authentication certificate for the website from a key server by providing an authentication certificate of the edge node device to the key server; and establishing a secure connection with the UE based at least in part on the authentication certificate. A method for wireless communication at a UE includes generating a request to access content of a website; processing the request at a modem, the processing including associating mobile CDN content delivery acceleration information with the request; and transmitting the request and the associated mobile CDN content delivery acceleration information to a network access device.
Abstract:
Techniques for handover into eIMTA enabled cells are disclosed. In an aspect, a target cell reconfigures RRC connection with a UE after completed handover to enable eIMTA and/or CoMP for the UE. In another aspect, a target cell includes eIMTA configuration information in a handover command to a UE. In another aspect, the target cell may estimate a virtual cell identity to generate the eIMTA configuration information and delay scheduling transmissions to the UE by flexible subframes until after handover is complete and the correct eIMTA configuration information confirmed by measurement or else corrected by RRC connection reconfiguration. In other aspects, the target cell may determine the correct virtual cell identity before handover, either by measuring SRS of the UE, or by receiving information in a handover request indicating results of CSI-RS measurement, by the UE, of virtual cells of the target cell.
Abstract:
Methods and devices for dynamic VSIM provisioning on a multi-SIM wireless device having a first SIM as a Universal Integrated Circuit Card (UICC) and a virtual SIM (VSIM). A provisioning server may receive updated information from the wireless device, and based at least partially on the received information, determine whether the SIM profile on the VSIM of the wireless device should be changed. To change the SIM profile, the provisioning server may determine whether remote credential management procedures are enabled. If so, the provisioning server may select a new SIM profile from a plurality of SIM profiles, and provision the new SIM profile in the VSIM using remote credential management procedures. If remote credential management procedures are unavailable, the provisioning server may select a remote SIM from a plurality of remote SIMs associated with the provisioning server, and run the remote SIM to execute authentication processes for the wireless device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with enabling communication of small data amounts while maintaining a RRC idle mode of operation for a UE. In an example, a UE is equipped to obtain a temporary radio bearer for communication of data, that meets one or more criteria for small data transmission, over a user plane in a UMTS or LTE based network, and transmit the data, over the user plane, using the temporary radio bearer while maintaining the UE in an RRC idle mode. A UTRAN entity may receive, over the temporary radio bearer assignment, the data from a UE in an idle mode, and send the data to a SGSN using a common small data connection. The SGSN may then send the data to a PGW.