Abstract:
In some aspects, a method for configuring channel access parameters in a wireless communication system includes determining, at an access point, an enhanced distributed channel access (EDCA) parameter for a first subset of stations of a plurality of stations, the first subset of stations capable of transmitting multi-user uplink transmissions. The method further includes generating an information element including the EDCA parameter. The method further includes transmitting the information element such that the information element is decodable by the first subset of stations and not by a second subset of stations of the plurality of stations.
Abstract:
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes exchanging, at an access point, at least one frame reserving a wireless medium with at least one of a first and second wireless device. The method further includes receiving a first communication on a first set of wireless frequencies from the first wireless device. The method further includes receiving a second communication, at least partially concurrent with the first communication, on a second set of wireless frequencies from the second wireless device. The method further includes transmitting at least one acknowledgment of the first and second communication. The first set and the second set are mutually exclusive subsets of a set of wireless frequencies available for use by both the first and second wireless device.
Abstract:
A method includes receiving, at a network node, a device-to-device D2D discovery request from a first device and sending a D2D discovery response from the network node to the first device. The D2D discovery response includes information associated with a second device that is available to establish a D2D connection with the first device. The network node may perform inquiries regarding D2D connection permission from both devices. If D2D connection is permitted by both devices, the network node may facilitate the D2D scanning by sending each device's scanning information to the other device via a non-D2D link. In parallel to D2D scanning, the network node may speed up D2D link setup by distributing, via non-D2D links, link setup information to each device, where the link setup information may include device credential(s), IP address allocation(s), and/or group owner assignment.
Abstract:
A wireless first device may receive a packet from another device from an overlapping basic service set (OBSS). A received power of the packet may be greater than a threshold for transmitting during the time of the packet. If the first device reduces its transmit power, the first device may increase the threshold. If the received power is less than the increased threshold, the first device may count down a backoff count during a transmission time or transmission opportunity of the packet. In some cases, after the transmission time or transmission opportunity, the first device may increase its transmission power. In some cases, the condition for counting down a backoff count may also include initiating or finishing the transmission during the transmission time or the transmission opportunity of the packet, or transmitting at the reduced power.
Abstract:
A method for configuring channel access parameters in a wireless communication system includes selecting an element identification (ID) from a plurality of element IDs. Each of the plurality of element IDs identifies an enhanced distributed channel access (EDCA) parameter set element comprising at least one channel access parameter for at least one subset of wireless devices in a group of wireless devices. The selected element ID is identifiable by wireless devices of the group of wireless devices and not identifiable by other wireless devices. The method further includes generating the EDCA parameter set element for setting the at least one channel access parameter for each wireless device in the at least one subset. The EDCA parameter set element includes the selected element ID. The method further includes transmitting the EDCA parameter set element to at least one wireless device in the at least one subset of wireless devices.
Abstract:
Systems and method for concurrent communication using high efficiency wifi are disclosed. One aspect is a method of transmitting a wireless message on a medium utilizing carrier sense multiple access (CSMA). The method includes receiving, via a first wireless device, at least a portion of a first wireless message from a second wireless device, the message including an indication of a basic service set of the second wireless device. The method also includes determining whether to defer transmission of a second wireless message based, at least in part, on the basic service set of the second wireless device.
Abstract:
Systems, methods, and devices for transmitting data are described herein. In some aspects, a method comprises generating a first message. The first message may comprise an allocation of a first station to a first frequency channel and a second station to a second frequency channel. The method further comprises transmitting the first message over the first frequency channel and the second frequency channel. The method further comprises transmitting, after transmission of the first message, a second message to the first station using the first frequency channel. The method further comprises transmitting, after transmission of the first message, a third message to the second station using the second frequency channel.
Abstract:
Systems and methods for wireless communication are disclosed. In one aspect an access point transmits a message to a first device and a second device on a first channel, the message sufficient to inform the first device to camp on a first channel during a time slot and the message sufficient to inform the second device to camp on a second channel during the time slot. The access point further determines whether the first channel is busy during the time slot. If the first channel is determined to not be busy during the time slot, the access point communicates with the first device on the first channel during the time slot. If the first channel is determined to be busy during the time slot, the access point communicates with the second device on the second channel during the time slot.
Abstract:
Methods, devices, and computer program products for synchronization of wireless devices in a peer-to-peer network are described herein. In one aspect, a method for synchronizing a wireless communication apparatus is provided. The method includes determining, at a wireless communication apparatus, a first time interval since transmitting a message including a time value of a clock signal of the wireless communication apparatus; and determining, at the wireless communication apparatus, a second time interval since updating the time value of the wireless communication apparatus; and transmitting a message comprising content that is based on comparing the first time interval to a first threshold and comparing the second time interval to a second threshold.
Abstract:
Systems, methods, and devices for transmitting data are described herein. In some aspects, a method comprises generating a first packet. The first packet may comprise a physical layer and a media access control (MAC) layer. The MAC layer may allocate a first station to a primary frequency channel and a second station to a secondary frequency channel. The method further comprises transmitting the first packet to the first station and the second station. The method further comprises transmitting a second packet to the first station using the primary frequency channel. The method further comprises transmitting a third packet to the second station using the secondary frequency channel.