Abstract:
Uplink waveforms for operating long term evolution (LTE) in an unlicensed band (i.e., long term evolution-unlicensed (LTE-U) communication) are disclosed. Carrier aggregation (CA) and standalone (SA) are disclosed. LTE on the licensed channel may provide both control and data, LTE on the unlicensed channel may provide data. Managing variable transmission time interval (TTI) continuous transmission is disclosed for transmission over multiple subframes of an unlicensed carrier in LTE-U. Listen-before-talk (LBT) requirements of unlicensed carriers provide for additional channel occupancy constraints when scheduling resources for multiple UEs for variable TTI continuous uplink transmissions over multiple subframes. A joint control channel is disclosed that provides control information for all of the potentially available subframes to be scheduled for the uplink transmissions. In addition to management of the variable TTI continuous transmissions, adjustments to uplink signal parameters are also disclosed that address the constraints due to the LBT requirements of unlicensed carriers.
Abstract:
Long term evolution (LTE)/LTE-Advanced (LTE-A) deployments with unlicensed spectrum leverage more efficient LTE communication aspects over unlicensed spectrum, such as over WIFI radio access technology. In order to accommodate such communications, various uplink procedures may be modified in order to handle communications between licensed and unlicensed spectrum with LTE/LTE-A deployments with unlicensed spectrum.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which downlink transmission modes in a wireless network are semi-statically configured for a mobile terminal in multiple-input multiple-output (MIMO) operation. The apparatus provides multiple precoding matrix indicators (PMIs) for a plurality of ranks. The provision of multiple PMIs by the apparatus enables balanced performance among different ranks and avoids less than optimal performance observed when the apparatus provides only a single rank and PMI that are generally not optimal for all transmissions. Feedback configuration information received by an apparatus defines a plurality of channel state information feedback instances conditioned on an admissible rank value. Rank indicators (RIs) and PMIs corresponding to the feedback instances are determined and feedback is provided for the channel state information feedback instances.
Abstract:
Techniques are described for wireless communication. A first method includes receiving a first orthogonal frequency division multiplexing (OFDM) symbol including a plurality of reference signals (RSs) over a radio frequency spectrum band. The first method may also include receiving a second OFDM symbol including a first synchronization signal over the radio frequency spectrum band. A second method includes transmitting a first OFDM symbol including a plurality of RSs over an radio frequency spectrum band. The second method may also include transmitting a second OFDM symbol including a first synchronization signal over the radio frequency spectrum band. In each method, a first portion of the first OFDM symbol includes a higher density of the RSs than a remaining portion of the first OFDM symbol, and when included, the second OFDM symbol may be adjacent in time to the first OFDM symbol.
Abstract:
A method of wireless communication occurs in a frequency band having a first set of resources associated with a first carrier type and a second set of resources associated with a second carrier type. In one configuration, the first carrier type is a new carrier type and the second carrier type is a legacy carrier type. Legacy UEs may only receive signals from the second carrier type. However, new UEs may receive signals from both the first carrier type and the second carrier type. Therefore, to provide backward compatibility while supporting new UEs, an eNodeB may signal support of the first carrier type to a new UE while maintaining signaling with legacy UEs. Additionally, the eNodeB may restrict operations of a UE to the first set of resources or second set of resources.
Abstract:
A method of wireless communication includes receiving position location reference signals (PRSs) from multiple remote radio heads (RRHs) and a macro eNodeB having a same physical cell identity (PCI). Each PRS is a same PRS. Additionally, the PRSs from the multiple RRHs are received on subframes that are different from subframes used by the macro eNodeB. Furthermore, each PRS does not indicate a source of transmission. The method also includes determining a time difference between the received PRSs.
Abstract:
Methods, systems, and devices are described for hierarchical communications within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing.
Abstract:
Methods and apparatuses are described for wireless communications. A first method includes transmitting a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal to a wireless node in a licensed spectrum, and transmitting, concurrently with the transmission of the first OFDMA communications signal, a second OFDMA communications signal to the wireless node in an unlicensed spectrum. A second method includes receiving a first Orthogonal Frequency-Division Multiple Access (OFDMA) communications signal from a wireless node in a licensed spectrum, and receiving, concurrently with the reception of the first OFDMA communications signal, a second OFDMA communication signal from the wireless node in an unlicensed spectrum. A third method includes generating a periodic gating interval for a cellular downlink in an unlicensed spectrum, and synchronizing at least one boundary of the periodic gating interval with at least one boundary of a periodic frame structure associated with a primary component carrier of the cellular downlink.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless devices may operate in an extended connected discontinuous reception (eDRX) mode to increase energy efficiency and extend battery life. Control signaling may be used to initiate or support the extended sleep cycles associated with eDRX operation. In some cases, a system frame number (SFN) extension may be implemented to record frame cycles and differentiate SFNs that occur in a first frame cycle from SFNs that occur in a second frame cycle. Control techniques to support eDRX operation and maintain network synchronicity and compatibility may also be employed. In some examples, a wireless system may broadcast extended or dedicated system information updates to an eDRX capable device or devices. In some cases, devices may adjust the rate at which radio link monitoring (RLM) measurements are taken to timely determine radio link failures (RLFs) in conjunction with eDRX operation.
Abstract:
Techniques are described for wireless communication. One method includes winning a contention for access to an unlicensed radio frequency spectrum band, transmitting a request message upon winning the contention for access to the unlicensed radio frequency spectrum band, and receiving a response message over the unlicensed radio frequency spectrum band. The request message is transmitted by a user equipment (UE) on an enhanced physical random access channel (ePRACH) or shortened ePRACH (SePRACH), to access a cell that operates in the unlicensed radio frequency spectrum band. The response message is received in response to transmitting the request message, and the request message may be transmitted irrespective of whether a base station has gained access to the unlicensed radio frequency spectrum band.