Abstract:
A user equipment (UE) avoids entering a limited service state when the UE attempts to switch from a first radio access technology (RAT) to a second RAT when the UE experiences a communication service outage with respect to the second RAT. In one instance, the UE attempts to access the second radio access technology (RAT) from a first RAT. The first RAT may be in a service outage or have weak coverage. The UE does not reach a maximum number of network access failures in the second RAT. Rather, the UE attempts to acquire a third RAT before reaching the maximum number of retries. The third RAT may be the same as the first RAT or may be a different RAT altogether.
Abstract:
A user equipment (UE) mitigates in-device interference caused by a simultaneous circuit-switched call on a first subscriber identity module (SIM) and another call on a second subscriber identity module (SIM) at the UE. The UE detects in-device interference between the circuit switched call and the other call. The UE then suspends the other call or reduces a transmit power of the other call when the in-device interference is above a predetermined threshold. The UE resumes the other call or increases the transmit power of the other call when the circuit switched call ends.
Abstract:
A user equipment (UE) quickly reselects from a first radio access technology (RAT) to a third RAT. The first RAT does not provide neighbor frequencies of the third RAT. Therefore, the user equipment first starts reselection to a second RAT. The user equipment then collects system information from the second RAT. The system information includes one or more frequencies of the third RAT. The user equipment searches for one or more frequencies of the third RAT and measures one or more detected cells corresponding to the one or more frequencies of the third RAT. The user equipment bypasses camping on the second RAT and directly camps on the third RAT when a signal quality of a detected cell corresponding to the one or more frequencies is above an absolute threshold.
Abstract:
A user equipment (UE) receives a circuit switched page from a first radio access technology (RAT) and a command instructing the UE to redirect to a second RAT. The command indicates a designated location area identity of the second RAT. The UE detects base stations of the second RAT and determines whether a strongest base station is in an area identified by the designated location area identity. The UE connects to the strongest base station based on the determining. When the designated location area identity is a permitted location area, the UE connects to the strongest base station when the location of the strongest base station is included in the permitted location area. When the designated location area identity is a prohibited location area, the UE connects to the strongest base station when the location of the strongest base station is not included in the prohibited location area.
Abstract:
In a method of wireless communication, a UE receives a redirection message from a first radio access technology (RAT) to move to a second RAT. The UE scans frequencies of the second RAT indicated in the received redirection message from the first RAT and does not detect a cell. The UE scans a third RAT and collects system information from a detected cell in the third RAT but does not camp on the detected cell in the third RAT. The UE scans frequencies of the second RAT indicated in the collected system information and detects a cell. The UE then performs a call setup with the detected cell of the second RAT.
Abstract:
A user equipment (UE) improves wireless communication when the UE returns or attempts to return to a first radio access technology (RAT) from a second RAT after a circuit switched fall back (CSFB) call failure due to a radio resource control (RRC) connection failure. In one instance, the UE successfully redirects to the second RAT from a first RAT. The UE then determines that the circuit switched fall back call on the second RAT failed. In response to the determination of the failure, the UE waits for a predetermined amount of time for second RAT re-paging or a user re-initiating the circuit switched call. The UE then performs fast return to the first RAT after the predetermined amount of time expires or in response to a user input.
Abstract:
A cell reselection technique establishes a data call on a different radio access technology (RAT) when a background application requests initiation of a data call while camped on a serving RAT. Rather than setting up the data call immediately on the serving RAT, a user equipment (UE) determines signal quality of the other RAT. When the signal quality is good, the UE delays call setup until after reselecting to the other RAT.
Abstract:
A user equipment (UE) prevents re-transmissions of downlink high-speed data during a tune away procedure when an acknowledgment (ACK) to the high-speed data is not received at a network. In one instance, the UE decodes a first high-speed grant and corresponding downlink high-speed data before tuning away from a serving base station. The UE determines that a first timing for transmitting an acknowledgement of the decoded high-speed downlink data occurs during a tune away gap. The UE determines a second time for sending the acknowledgment based on a determination of a second high-speed grant missed during the tune away gap. The UE transmits an acknowledgement (ACK) for the decoded downlink high-speed data in accordance with a time line of the missed second high-speed grant.
Abstract:
A method of wireless communication measures a signal strength and/or quality of a target cell. An absolute threshold value is set based at least in part on the rank difference between a serving cell and the target cell. The serving cell and target cell may have the same priority or no network indicated priority. The UE reselects to the target cell when the signal strength exceeds the absolute threshold value.
Abstract:
A user equipment (UE) reselects back to a higher priority radio access technology (RAT) when network configured parameters do not provide sufficient time to perform the IRAT reselection measurements and evaluation due to the UE spending a very short duration in a discontinuous reception (DRX) mode. In one instance, the UE detects a triggering condition for incomplete cell reselection evaluation based on a number of past events. The UE computes a modified reselection timer value based on the past events and applies the modified reselection timer value to future events.