Abstract:
An axial brushless DC motor comprising a stator including a plurality of coils, a rotor including a magnet with a plurality of pairs of magnetic poles and adapted for movement relative to the stator in one or more full steps, and a coil phase circuit adapted for moving the rotor relative to the stator a fractional step less than the one or more full steps and/or holding the rotor at the fractional or one or more full steps.
Abstract:
To manufacture a permanent magnetic motor having saliency at a low cost, a permanent magnet motor includes a stator provided with an armature winding configured to form a plurality of phases, a rotor having a surface facing the stator, the rotor including a permanent magnet disposed to face the stator, the permanent magnet having a plurality of magnetic poles arranged in a circumferential direction of the rotor, and a conductive member made of a conductive material and disposed on the surface of the rotor facing the stator.
Abstract:
A stepper motor has a rotor having a permanent magnet, a stator housing and a plurality of stator coil assemblies disposed within the stator housing. Each coil assembly has a bobbin, a coil wound about the bobbin, and two pole plates having pole fingers extending axially inside of the bobbin. The bobbin is disposed between the two pole plates and defines a space accommodating the rotor. A number of magnetic detent plates are disposed about the permanent magnet rotor. Each magnetic detent plate has a central opening accommodating the rotor and a plurality of projections extending inwardly, spaced about the central opening. The projections interact with the magnetic field of the rotor magnet.
Abstract:
In the outer rotor-type motor, coil leads can be efficiently wired in small spaces of stator units. The outer rotor-type motor comprises: a stator being constituted by a plurality of the stator units, in each of which a coil is sandwiched between stator yokes having magnetic pole teeth; a rotor having a rotor yoke, which includes a permanent magnet and which is capable of rotating together with an output shaft; and lead terminals of a driving circuit for energizing the coils. Each of the stator yokes is constituted by a plurality of yoke parts and formed into a ring shape, the stator yokes surround outer circumferences of the coils, and coil leads are extended outward from the inner side of each of the coils via a gap between the outer circumference of the coil and the magnetic pole teeth.
Abstract:
The invention concerns a polyphase motor comprising M phases, M being equal to 2 or 3, the motor consisting of a stator part (1) excited by electric coils and by a magnetized rotor (2). The invention is characterized in that the rotor (2) has a disc-shaped magnetized part with R pairs of alternately poles magnetized in alternating directions in the thickness, R being equal to n*(M+1) or 5*n, and said stator part (1) has S poles, some of which excited at least by an electric coil, S being equal to 8*n, for even M, and 9*n for odd M, n being an integer not less than 1.
Abstract:
A stepper motor has a rotor having a permanent magnet, a stator housing and a plurality of stator coil assemblies disposed within the stator housing. Each coil assembly has a bobbin, a coil wound about the bobbin, and two pole plates having pole fingers extending axially inside of the bobbin. The bobbin is disposed between the two pole plates and defines a space accommodating the rotor. A number of magnetic detent plates are disposed about the permanent magnet rotor. Each magnetic detent plate has a central opening accommodating the rotor and a plurality of projections extending inwardly, spaced about the central opening. The projections interact with the magnetic field of the rotor magnet.
Abstract:
A hybrid step motor comprises a stator, a rotor assembly, a magnet and a mandrel. The rotor assembly and the magnet are mounted on the mandrel and are disposed in the stator. The proportion of a stator outer diameter to a stator inner diameter is 1:0.475 to 1:0.6. The proportion of the stator outer diameter to a rotor outer diameter is 1:0.5125 to 1:0.5875. The proportion of a first rotor thickness to a magnet thickness to a second rotor thickness is 0.236:0.09:0.236 optimally. The proportion of the rotor outer diameter to a magnet outer diameter is 0.54:0.45. By such arrangements, the optimal proportion is formed and the output efficiency is improved.
Abstract:
In a multiple phase claw pole type motor which includes: a plurality of claw poles including a claw portion extending in an axial direction and having a magnetic pole surface facing a rotor in a state of being separated from the rotor by a small gap, a radial yoke portion extending radially outwardly from this claw portion, and an outer peripheral yoke extending from this radial yoke portion in the same direction as the direction of extension of the claw portion; a stator core formed by alternately placing the claw poles in a circumferential direction so that a distal end of each claw portion faces the outer peripheral yoke of an adjacent one of the claw poles; and a stator constructed by sandwiching an annular coil with the adjacent claw poles of this stator core, a multiple phase claw pole type motor characterized in that the claw poles are formed by compacting a magnetic powder and are formed of a magnetic compact having a DC magnetizing property of its flux density becoming 1.7 teslas or more when 10000 A/m of magnetic field is applied.
Abstract:
A stepping motor includes: a stator having main magnetic poles each having small stator teeth on its tip, a core-back portion that connects outer portions of the poles, and windings wound around the poles; and two sets of rotor units that are arranged in an axial direction and face the stator with an air gap therebetween. Each rotor unit consists of two rotor cores that are separated in the axial direction and a magnet sandwiched thereby and magnetized in the axial direction. Each rotor core has small rotor teeth around its outer surface. The rotor cores of each rotor unit are deviated by ½ pitch of the small rotor teeth, and the two rotor units are arranged to make the magnetic polarities of the small rotor teeth of the adjacent two rotor cores identical. A magnet thickness Tm and a rotor core thickness Tc satisfy 0.25≦Tm/Tc≦0.45.
Abstract:
Depressed portions for being fitted with two rotor collars 51, 52 are formed in two rotor stacks 72, 71 opposed to each other in an axial direction of the rotating shaft 1 with the rotor collars 51, 52 therebetween. Each of the rotor collars 51, 52 includes a central portion 5a and a pair of fitting portions 5b. Shapes of the depressed portions 8A and fitting portions 5b are both defined so that there occurs no relative displacement in the radial direction of the rotating shaft 1 between the rotor stacks 72, 71 and the rotor collars 51, 52 with the fitting portions 5b fitted into the depressed portions 8A. With this arrangement, position alignment of rotor collar and rotating shaft can easily be performed.