Abstract:
An array of bolometers suspended over a substrate by support arms located beneath the corresponding bolometer to allow maximum fill factor in the array.
Abstract:
A method and apparatus for detecting and classifying an object, including a human intruder. The apparatus includes one or more passive thermal radiation sensors that generate a plurality of signals responsive to thermal radiation. A calculation circuit compares the plurality of signals to a threshold condition and outputs an alarm signal when the threshold condition is met, indicating the presence of the object. The method includes detecting thermal radiation from an object at a first and second wavelength and generating a first and second responsive signal. The signals are compared to a threshold condition that indicates whether the object is an intruder.
Abstract:
A thermal type infrared sensing device has; a plurality of light-receiving electrodes for outputting a change of surface charge associated with a polarization that occurs in a dielectric when subjected to infrared radiation; and a plurality of compensation electrodes, corresponding one for one to plurality of light-receiving electrodes, for compensating the outputs of corresponding light-receiving electrodes, and wherein plurality of compensation electrodes are formed on a different substrate from a substrate on which plurality of light-receiving electrodes are formed.
Abstract:
Incident infrared radiation of a particular polarity is sensed by a set of Niobium Trisulfide (NbS3) crystal fibers which are fixed in parallel upon a substrate. In order to detect unpolarized or variously polarized infrared radiation, plural substrates, each having associated therewith its own such set of parallel fibers, can be coplanarly arrayed whereby different angles are described by different sets of parallel fibers; for instance, 0-degree, 45-degree, 90-degree and 135-degree angles can each be described by one or more sets of parallel fibers within a given array. The crystalline fibrous Niobium Trisulfide material is not a semiconductor material but rather is a “charge density wave” material having special attributes. The invention thus offers more economical operability at much higher temperatures when compared with conventional infrared-photosensitive materials, and is especially suitable for detecting midwavelength infrared radiation.
Abstract:
A probe style radiometer includes a generally rectangular cross-sectional body and a probe having a square cross-section. The probe is preferably a hollow rod having a tip equipped with a UV-collecting aperture and a mirror. The mirror reflects UV light entering the aperture down the length of the rod to a detector in the body. A processor in the body then computes the amount of UV radiation based on signals from the detector. The amount may then be provided on a display integrated into the body. A ground quartz or glass window may be provided at the tip to seal the rod from exterior contamination and to diffuse the incoming UV radiation in a manner that will give the probe a near-cosine angular response. Filters within the radiometer body then filter this diffused radiation to the spectral region of interest. Preferably, the radiometer is battery powered and includes switches on the body to allow a user to control the mode of operation. To prevent electrical shock, the metal rod of the probe may contain an electrically non-conductive outer coating.
Abstract:
A ferroelectric/pyroelectric sensor that employs a technique for determining a charge output of a pyroelectric element of the sensor by measuring the hysteresis loop output of the element several times during a particular time frame for the same temperature. An external AC signal is applied to the pyroelectric element to cause the hysteresis loop output from the element to switch polarization. Charge integration circuitry, such as a combination capacitor and operational amplifier, is employed to measure the charge from the element. A mechanical shutter is not used, and thus the charge integration output from the element is directly proportional to the incident radiation thereof.
Abstract:
In an infrared-rays detector, a pyroelectric element detects existence or movement of a human body, and the output signal of the pyroelectric element is converted to a voltage signal. Then, the voltage signal is subjected to waveform analysis. Then, a detection signal is outputted only when a waveform generated by a human body is detected by the waveform analysis. For example, the voltage signal is amplified at two different frequency ranges, and the amplified signals are used for discriminating a signal due to a human body. Then, a noise such as a popcorn noise of the pyroelectric element is prevented to be detected erroneously as generated by a human body.
Abstract:
A ferroelectric/pyroelectric sensor that employs a technique for determining a charge output of a pyroelectric element of the sensor by measuring the hysteresis loop output of the element several times during a particular time frame for the same temperature. An external AC signal is applied to the pyroelectric element to cause the hysteresis loop output from the element to switch polarization. The frequency of the external AC signal is greater than the frequency of a chopper selectively applying a reference temperature and a scene temperature alternately to the pyroelectric element. Each time the chopper provides the reference temperature or the scene temperature to the element, the alternating external source covers multiple cycles so that the hysteresis loop output is switched multiple times for increased signal averaging. Because the shape and size of the loop is different for the reference temperature and the scene temperature, a comparison between the measured charge for both time periods can be provided to give a signal having an increased signal-to-noise ratio.
Abstract:
An infrared sensor includes a first infrared sensing element separated by a dielectric layer from on a silicon substrate and thermally isolated from the substrate by a void in the dielectric layer. The sensor has a second temperature sensing element which detects the temperature of the whole sensor. The output difference between the first and second sensor elements is used as gate/source voltage of a MOSFET. The current variation of the MOSFET is read out as a discharge from a capacitor connected to the MOSFET. The noise in the sensor is suppressed, and performance is improved. An infrared sensor array includes the sensors arranged in an array.
Abstract:
Temperature states of a clinical thermometer body and an environment are estimated by temperatures measured by a first temperature sensor integrally formed together with an infrared sensor arranged to the distal end of a probe and a second temperature sensor arranged on the bottom side of a probe holder, and processes suitable for the respective temperature states are performed. An estimation error or the reliability of an estimation value is calculated by the temperatures to notify a user of the estimation error or the reliability by an LCD or the like.