Abstract:
A scanner module and an image scanning apparatus employ an illuminator that includes at least one light emitting diode, a light guide to change the direction of the light from the light emitting diode, and a light source holder to which the light emitting diode is mounted, the light source holder being positioned in relation to the light guide such that the light source holder covers an incidence face of the light guide, on which the light from the light source is incident, the surface of light source holder facing the incidence face reflecting light incident thereupon. The reflection of light by the light source holder reduces the possibility of leakage of light, and can enhance luminous intensity of light of the illuminator.
Abstract:
An image reading apparatus includes an integral scanning optical unit in which a light source device for illuminating an original placed on an original table, a plurality of mirrors for reflecting a light beam from the original and an imaging optical system for imaging the light beam reflected by the mirrors, upon a reading device, are integrally accommodated, wherein at least one mirror is so configured that the light beam is incident thereon twice or more, wherein, in a sub-scan section, reflection surfaces of the mirrors are disposed in a space at an original-reading-position side of a light entrance surface of the imaging optical system, and wherein the reflection surface of a mirror disposed at a position optically closest to the light entrance surface of the imaging optical system is placed at a position furthermost from the original table with respect to a direction of a normal thereto, as compared with the reflection surfaces of the remaining mirrors.
Abstract:
An optical reader which reads image information on an original document by moving to the original document includes an illumination unit having at least one light source arranged on a substrate and illuminating the original document, a plurality of mirrors reflecting reflection light from the original document, a focusing lens focusing the reflection light from the original document reflected by the mirrors, and a photoelectric conversion element arranged in a focusing position of the focusing lens, a normal direction of an emission surface of the light source and a normal direction of a light-receiving surface of the photoelectric conversion element are the same direction, an original document reading position is set near an end portion of the optical reader in the normal direction.
Abstract:
An image reading apparatus detecting scratch and dirt information of a film document without the need for complex structures and complex control in the image reading apparatus. The apparatus can read a transmissive original document and/or a reflective original document. The apparatus includes a first light source that illuminates the transmissive original document, a second light source that illuminates one of the reflective original document and the transmissive original document, an image sensor that generates electronic image data, a detector unit that detects non-image information from the image data, and a correction unit that corrects the image data, based on the non-image information detected by the detector unit.
Abstract:
An image reading apparatus includes an integral scanning optical unit in which a light source device for illuminating an original placed on an original table, a plurality of mirrors for reflecting a light beam from the original and an imaging optical system for imaging the light beam reflected by the mirrors, upon a reading device, are integrally accommodated, wherein at least one mirror is so configured that the light beam is incident thereon twice or more, wherein, in a sub-scan section, reflection surfaces of the mirrors are disposed in a space at an original-reading-position side of a light entrance surface of the imaging optical system, and wherein the reflection surface of a mirror disposed at a position optically closest to the light entrance surface of the imaging optical system is placed at a position furthermost from the original table with respect to a direction of a normal thereto, as compared with the reflection surfaces of the remaining mirrors.
Abstract:
A light guide including a light scattering portion that reflects light guided inside the light guide, and a light emitting surface portion emitting light reflected by the light scattering portion to outside the light guide. A light emitting surface portion includes first and second light emitting surface portions, the first light emitting surface portion has a longer circumferential length than that of the second light emitting surface portion in the transversal cross section, and circumference curvature of the first light emitting surface portion in the transversal cross section increases away from the second light emitting surface portion. A normal line to the light scattering portion, passing through the center of the light scattering portion in the transversal cross section, intersects with the first light emitting surface portion, at a point at a near side to the second light emitting surface portion in the transversal cross section.
Abstract:
A scanner comprising a platen positioned along a first plane and configured to support an article to be scanned; one or more illuminators positioned below the platen along a second plane parallel to the first plane, and configured to emit light beams; one or more mirrors positioned between the platen and the one or more illuminators, each of the mirrors being configured to direct a light beam having a directional component parallel to the first and second planes emitted by the illuminators onto the article on the platen at the imaging point; one or more sensors configured to detect the light reflecting off the article at the imaging point along a sensor optical path; and a carriage mechanism constructed to affect relative movement parallel to the first and second planes between platen, and the one or more illuminators and the one or more mirrors in a scanning direction.
Abstract:
An optical reader which reads image information on an original document by moving to the original document includes an illumination unit having at least one light source arranged on a substrate and illuminating the original document, a plurality of mirrors reflecting reflection light from the original document, a focusing lens focusing the reflection light from the original document reflected by the mirrors, and a photoelectric conversion element arranged in a focusing position of the focusing lens, a normal direction of an emission surface of the light source and a normal direction of a light-receiving surface of the photoelectric conversion element are the same direction, an original document reading position is set near an end portion of the optical reader in the normal direction.
Abstract:
An image sensing apparatus having a large depth of focus (DOF) and being compact in size is provided. The image sensing apparatus includes a plurality of light sources that shines light beams on an illumination portion of a document; a first mirror that receives incident light scattered by reflection from the document, to reflect the scattered light in the secondary scan direction; a plurality of first concaved aspheric mirrors that collimates light beams from the first mirror, to reflect therefrom the collimated light beams as substantially collimated light fluxes; an aperture mirror that reflects therefrom the light beams from the respective first aspheric mirrors, through apertures each having a light-shielded portion formed therearound and selectively passing the light beams therethrough; a plurality of second concaved aspheric mirrors that receives the light beams incident from the respective aperture mirror, to reflect the incident light beams as converging light beams; a second mirror that reflects the light beams in a direction perpendicular to the surface of the document, disposed on a path of the light beams to be converged by means of the second aspheric mirrors; a plurality of light receivers each having a light-receiving area that receives the light beams from the second mirrors, to form images according to the light beams from the respective apertures; and a casing where the first and second aspheric mirrors are disposed on a first side of the casing in the secondary scan direction, and the aperture mirror is disposed on a second side thereof in the secondary scan direction.
Abstract:
Transparency media adapter and methods of using the same. Implementations of a system may comprise an imaging device having a light source and at least one sensor. A media adapter operatively associated with the imaging device includes a first reflective surface and a second reflective surface arranged to shift light emitted by the light source to a predetermined focus point of the at least one sensor during an imaging operation.