Abstract:
A contact image sensor comprises a housing, a light source provided on the upper part of the housing to irradiate light to a document, lenses arranged in the housing and provided at least on an entering side and an outgoing side to focus reflected light from a reading position of the document, an aperture angle regulation member having an inclined surface to reflect a part of light irradiated from the light source at the reading position of the document and an aperture portion into which the reflected light enters directly to regulate an aperture angle to permit the reflected light passing through the aperture portion to be irradiated to the lens on the entering side, and a light receiving element array to receive and photoelectrically convert the reflected light focused after passing through the lenses.
Abstract:
A carrier device for a contact image sense optical scanner. The carrier device incorporates a pair of magnets with identical poles facing each other or a fluid filled sealed chamber for exerting an equal pressure on a scanning module within the scanner and maintaining close contact with a document platform throughout a scanning operation.
Abstract:
A lighting device includes a light source that illuminates an object of illumination, a reflecting member provided opposite the light source so as to direct a first part of illuminating light emitted therefrom to the object of illumination, and a light-blocking member provided between the light source and the object of illumination and between the reflecting member and the object of illumination. The light-blocking member blocks the first directed part of the illuminating light and a second part of the illuminating light directly illuminating the object of illumination with a certain ratio of a light-blocking rate for the first directed part of the illuminating light to a light-blocking rate for the second directly illuminating part of the illuminating light.
Abstract:
A contact image sensor module has a light source, at least one reflective element and a photoelectric conversion element. The photoelectric conversion element is arranged between the light source and the reflective element, such that the light from the light source is directed toward the manuscript. The reflective element receives the light reflected from the manuscript, and then the light is reflected back to the manuscript. The photoelectric conversion element receives light directed from the light source and the reflective element toward the manuscript, and then the light is converted into an electric signal, thus eliminating the dark band problem of the manuscript.
Abstract:
An image reading apparatus includes a housing provided with a light passage, a transparent plate mounted on the housing, a light source for emitting light into the light passage, a lens array facing the image reading section on the transparent plate, a plurality of light-receiving elements arranged in an array extending in a primary scanning direction, and a light reflector formed on the transparent plate. The light reflector is offset from the image reading section in the secondary scanning direction, which is perpendicular to the primary scanning direction.
Abstract:
A lighting device includes a light source that illuminates an object of illumination, a reflecting member provided opposite the light source so as to direct a first part of illuminating light emitted therefrom to the object of illumination, and a light-blocking member provided between the light source and the object of illumination and between the reflecting member and the object of illumination. The light-blocking member blocks the first directed part of the illuminating light and a second part of the illuminating light directly illuminating the object of illumination with a certain ratio of a light-blocking rate for the first directed part of the illuminating light to a light-blocking rate for the second directly illuminating part of the illuminating light.
Abstract:
A method of making a casing of an image sensor is provided. The method includes the steps of preparing the casing, and applying a static electricity preventive to the casing. The casing is formed with a light passage configured to conduct light emitted from a light source. The static electricity preventive is applied to the inner surfaces of the casing defining the light passage. While the application of the preventive is performed, flashes formed at the light passage are removed.
Abstract:
A lens array unit includes first and second lens arrays cooperative with each other. The first lens array is provided with a plurality of first convex lenses and a first transparent holder formed integral with the first lenses. Each of the first lenses has first and second lens surfaces. The second lens array is provided with a plurality of second convex lenses and a second transparent holder formed integral with the second lenses Each of the second lenses has third and fourth lens surfaces. The second lens array is attached to the first lens array so that the third lens surfaces face the second lens surfaces. The lens array unit further includes a light shield mounted on the first lens array. The light shield is formed with a plurality of through-holes each facing the relevant one of the first lens surfaces.
Abstract:
An image reading apparatus includes a housing provided with a light passage, a transparent plate mounted on the housing, a light source for emitting light into the light passage, a lens array facing the image reading section on the transparent plate, a plurality of light-receiving elements arranged in an array extending in a primary scanning direction, and a light reflector formed on the transparent plate. The light reflector is offset from the image reading section in the secondary scanning direction, which is perpendicular to the primary scanning direction.
Abstract:
A rod lens array, used in an image sensor, is configured by sandwiching a plurality of rod lenses with two side plates. Among the two side plates, the one which is on the side of the illumination device is made thinner than the other side plate.