Abstract:
A universal power adapter has an input for receiving an input voltage from a power source and an output for supplying an output voltage selected from amongst two or more preset voltages. A voltage converter circuit converts between the input voltage and the two or more preset voltages. A connector tip connectable with the output connects one of the two or more preset voltages to the output.
Abstract:
A telecommunications apparatus for use with a plug having at least first, second and third pins. The telecommunications apparatus includes a plug connector for receiving the plug. The plug connector includes at least first, second and third electrical contacts for electrically contacting the first, second and third pins, respectively, when the plug is inserted in the plug connector. The plug connector also includes an electrical by-pass pathway that: i) electrically connects the first and second electrical contacts when the plug is fully removed from the plug connector such that a signal can enter the plug connector through the first contact, pass through the by-pass pathway to the second contact, and exit the plug connector through the second contact; and ii) does not electrically connect the first and second electrical contacts when the plug is fully inserted within the plug connector such that a signal can enter the plug connector through the first contact, pass through the plug to the second contact, and exit the plug connector through the second contact.
Abstract:
AC module makers must prepare two types of AC modules for the 100-V and 200-V outputs only for domestic supply. For foreign countries, the makers must manufacture AC modules compatible with more system voltages. To solve these problems, the control circuit of an AC module controls the operation of an inverter circuit and/or the transformation ratio of a transforming circuit, and ON/OFF-controls a switch on the basis of the system voltage and connection state of an electric power system.
Abstract:
This invention comprises an auxiliary light apparatus for use in combination with a backup light apparatus of a truck or other vehicle. The auxiliary light apparatus comprises a male or female electrical plug for connection to a mating plug on the original vehicle backup light apparatus; an electrical voltage relay element in the auxiliary plug apparatus; a toggle switch in the auxiliary apparatus and auxiliary lights mounted on the vehicle. The auxiliary lights function simultaneously with the original vehicle backup lights in response to activation of the reverse gear apparatus of the vehicle transmission, with the voltage relay acting to deliver sufficient voltage to activate both the original vehicle backup lights and the auxiliary lights. In another embodiment of the invention, the toggle switch is closed to access directly the vehicle 12 volt source to power the auxiliary lights for use as work lights, even when the vehicle reverse gear is not engaged. Another embodiment of the invention comprises a pass-through auxiliary connector having a towed vehicle auxiliary connector plug end opposite the auxiliary plug end connected to the towing vehicle, which towed vehicle auxiliary connector plug includes a plurality of either pin or blade female connection apertures, or male connector pins or blades, adapted to receive a mating connector from a towed vehicle.
Abstract:
Headset connector systems and headset engaging connector systems are provided. Headset connector systems can include two or more headset connector contact regions. Headset engaging connector systems can include two or more headset engaging contact regions to provide at least one of power and data. The headset connector system or the headset engaging connector system can include switching circuitry electrically coupled to the respective contact regions. The switching circuitry can be operative to determine an interface orientation between the headset connector contact regions and the headset engaging contact regions. The switching circuitry can also be operative to selectively route received signals based on the determined interface orientation. At least a portion of the headset connector system or the headset engaging connector system can be magnetically attractive.
Abstract:
A universal power adapter has an input for receiving an input voltage from a power source and an output for supplying an output voltage selected from amongst two or more preset voltages. A voltage converter circuit converts between the input voltage and the two or more preset voltages. A connector tip connectable with the output connects one of the two or more preset voltages to the output
Abstract:
An antenna is provided with an electronic component or circuit that has a value corresponding to properties of the antenna. A read mechanism reads the value and sets an operational status of a transceiver based on the value. In one embodiment, electronic component is a resistor having a value that identifies the antenna properties. A table may be used to correlate resistor values to different types of antennas or sets of antenna properties. Alternatively, the circuit can be embodied in a microchip that provides a response to a challenge sent by the read mechanism. The response encodes the properties of the antenna. The encoding scheme includes values from the challenge. Alternatively, the response is a code that is indexed into a table of antenna properties. In one embodiment, the antenna is connectorized.
Abstract:
A modular electrical receptacle including a housing, a plurality of semi-rigid electrical conductors disposed at least partially within the housing including a first semi-rigid conductor and a second semi-rigid conductor and at least one flexible electrical conductor including a first flexible conductor electrically connecting the first semi-rigid conductor and the second semi-rigid conductor.
Abstract:
An antenna is provided with an electronic component or circuit that has a value corresponding to properties of the antenna. A read mechanism reads the value and sets an operational status of a transceiver based on the value. In one embodiment, electronic component is a resistor having a value that identifies the antenna properties. A table may be used to correlate resistor values to different types of antennas or sets of antenna properties. Alternatively, the circuit can be embodied in a microchip that provides a response to a challenge sent by the read mechanism. The response encodes the properties of the antenna. The encoding scheme includes values from the challenge. Alternatively, the response is a code that is indexed into a table of antenna properties. In one embodiment, the antenna is connectorized.
Abstract:
A telecommunications apparatus for use with a plug having at least first, second and third pins. The telecommunications apparatus includes a plug connector for receiving the plug. The plug connector includes at least first, second and third electrical contacts for electrically contacting the first, second and third pins, respectively, when the plug is inserted in the plug connector. The plug connector also includes an electrical by-pass pathway that: i) electrically connects the first and second electrical contacts when the plug is fully removed from the plug connector such that a signal can enter the plug connector through the first contact, pass through the by-pass pathway to the second contact, and exit the plug connector through the second contact; and ii) does not electrically connect the first and second electrical contacts when the plug is fully inserted within the plug connector such that a signal can enter the plug connector through the first contact, pass through the plug to the second contact, and exit the plug connector through the second contact.