Abstract:
A method and apparatus is disclosed for electrostatic deflection and focusing of a charged particle stream. The apparatus can include plural vertical and horizontal deflection plates, although a single vertical and a single horizontal deflection plate each with a reference potential plane are preferred. Both orthogonal and preferably tilted display screens are employed to receive the deflected beam. The particle stream is injected offset from a centered position and the stream is deflected asymmetrically relative to the attracting deflection plate. Two alternately preferred computer programs are employable to calculate an offset position. A preferred external quadrupole is employed to correct any residual astigmatism in the particle stream. In one embodiment, the apparatus is disposed in a cathode ray tube. A reduced footprint CRT is also disclosed. Methods and apparatuses for an energy filtered electron beam, a mass spectrometer and a mass separator are also disclosed.
Abstract:
The invention refers to a device for electrostatic deflection of a particle beam out of a primary beam direction for the purpose of scanning a plane spanned by two coordinates X, Y, in which multiple electrodes configured as deflection wires are connected to an activation circuit and are acted upon, depending on the activation, by modifiable deflection voltages; the primary beam direction intersects the origin of coordinates X and Y, and the respective applied deflection voltage is an equivalent for the deflection of the particle beam out of the primary beam direction in the direction of coordinate X or coordinate Y. In such a device, the deflection wires are linked into deflection grids and are joined to one another and to the activation circuit in such a way that an equivalent deflection voltage is always applied to all deflection wires belonging to one and the same deflection grid.
Abstract:
A method and apparatus is disclosed for electrostatic deflection and focusing of a charged particle stream. The apparatus can include plural vertical and horizontal deflection plates, although a single vertical and a single horizontal deflection plate each with a reference potential plane are preferred. Both orthogonal and preferably tilted display screens are employed to receive the deflected beam. The particle stream is injected offset from a centered position and the stream is deflected asymmetrically relative to the attracting deflection plate. Two alternately preferred computer programs are employable to calculate an offset position. A preferred external quadrupole is employed to correct any residual astigmatism in the particle stream. In one embodiment, the apparatus is disposed in a cathode ray tube. A reduced footprint CRT is also disclosed. Methods and apparatuses for an energy filtered electron beam, a mass spectrometer and a mass separator are also disclosed.
Abstract:
A method for forming an electrostatic field deflector tube (50) for use in an electron beam machine (10) which comprises the use of a rigid boring bar (88) with a diamond scribe tip (90) and a rigid holder (92) for the metal coated tube. The scribe tip (90) is positioned within the bore of the tube and the boring bar (88) is stroked in a direction parallel to the tube axis while engagement with the inner coating to scribe very narrow lines (66) on the inner surface of the tube. These lines (66) are formed over a major portion of the length of the tube and of a width less than 0.001 in. After each scribing step, the tube (or the boring bar and scribe tip as the case may be) is incrementally rotated to form a number of separate electrically isolated areas. Dial position indicators with digital readouts (92) locate the scribe tip (90) within a few ten thousandths of an inch and optical and resiatance means are used to determine the integrity of each scribed line.