Abstract:
The invention relates to a method of evaluating the play between two threaded components, a first component comprising an internal thread, and a second component comprising an external thread that corresponds to the internal thread of the first component, the components are engaged with each other the method comprising the steps of: applying a torque from a motor to said components such that a first side of the internal thread is in contact with an opposing first side of the external thread wherein the two components are mutually rotated, which mutual rotation yields a mutual translation movement of the two threaded components; fixing the components with respect to each other, such that no mutual translation movement is allowed, whereas mutual rotation is still allowed; withholding the applied torque to one of said components, until a second side of the internal thread is in contact with an opposing second side of the external thread, monitoring the applied torque during the above steps by determining the power input to the motor and the rotational speed of the motor in order to identify a first point in time when the first side of the internal tread loses contact with the opposing first side of the external tread and a second point in time when the second side of the internal tread meets the opposing second side of external tread, calculating from the identification of the first and second points in time a play (a) between the internal tread and the external tread evaluating the play (a) by comparing the play (a) with a reference play. The invention further relates to an evaluation system for evaluating the play between the two threaded components.
Abstract:
The present invention provides a gray rod control assembly (GRCA) containing an improved neutron absorber comprised of a porous matrix of refractory metal infused with a neutron absorbing metal or metal alloy for a nuclear reactor. The reactor has a plurality of fuel assemblies, each including numerous elongated fuel rods supported in an organized array by substantially transverse support grids, and a plurality of guide thimbles disposed through the support grids and along the fuel rods. The GRCA includes a spider assembly structured to provide controlled insertion of gray rod assemblies within the thimbles of the fuel assembly, thereby controlling the rate of power produced by the reactor. Each gray rod assembly includes an elongated tubular member, a first end plug, a second end plug and the improved neutron-absorber disposed within the tubular member. Delta-power of the reactor is improved by the relatively small percentage of neutron absorbing metal infused in the porous matrix of the refractory metal of the neutron absorber and by distributing the neutron absorber in segments among a plurality of rods of the GRCA.
Abstract:
A fast reactor including a reactivity control assembly including a reactor shutdown rod and neutron absorbers, a reactor shutdown rod drive mechanism, and units of neutron absorber drive mechanism. The reactor shutdown rod drive mechanism causes an inner extension tube to fall and release the reactor shutdown rod by a gripper section by turning off the power supply to a holding magnet at the time of scram. When grasping the neutron absorbers, an outer extension shaft is pulled up to allow both of the extension shafts to be inserted. After the outer extension tube gets to a handling head section of the neutron absorber, the outer extension shaft is pushed down to grasp the neutron absorber externally by latch fingers of the gripper section so that the neutron absorber can be moved up and down.
Abstract:
A method for surface processing at least a portion of a component of zirconium or hafnium alloy, including at least one operation of nanostructuring a surface layer of the alloy so as to confer on the alloy over a thickness of at least 5 μm a grain size which is less than or equal to 100 nm, the nanostructuring being carried out at a temperature which is less than or equal to that of the last thermal processing operation to which the component was previously subjected during its production.Component of zirconium or hafnium alloy processed in this manner.
Abstract:
An absorber rod for a nuclear reactor having a rod cladding defining an internal volume, the rod cladding having an upper end and a lower end, an upper end fitting positioned in the upper end of the rod cladding, a rod internal arrangement configured in the internal volume of the rod cladding, an absorber rod lower end cap positioned at the lower end of the rod cladding, the lower end cap having an upper surface and a lower surface, a stack support with a stack support upper end and a stack support lower end, the stack support lower end placed in contact with the upper surface of the lower end cap, the stack support upper end configured to support the rod internal arrangement, and an annulus of material configured around the stack support and contacting the upper surface of the lower end cap.
Abstract:
An advanced gray rod control assembly (GRCA) is for a nuclear reactor. The reactor has a plurality of fuel assemblies each including numerous elongated fuel rods supported in an organized array by substantially transverse support grids, and a plurality of guide thimbles disposed through the support grids and along the fuel rods. The GRCA includes a spider assembly structured to provide controlled insertion of gray rod assemblies within the thimbles of the fuel assembly, thereby controlling the rate of power produced by the reactor. Each gray rod assembly includes an elongated tubular member, a first end plug, a second end plug, a substantially pure silver neutron-absorber disposed within the tubular member, and a support tube surrounding the neutron-absorber within the tubular member to resist silver-swelling. Delta-power of the reactor is improved by minimizing the exposed surface area of the absorber and distributing it among all of the rods of the GRCA.
Abstract:
An absorber rod for a nuclear reactor having a rod cladding defining an internal volume, the rod cladding having an upper end and a lower end, an upper end fitting positioned in the upper end of the rod cladding, a rod internal arrangement configured in the internal volume of the rod cladding, an absorber rod lower end cap positioned at the lower end of the rod cladding, the lower end cap having an upper surface and a lower surface, a stack support with a stack support upper end and a stack support lower end, the stack support lower end placed in contact with the upper surface of the lower end cap, the stack support upper end configured to support the rod internal arrangement, and an annulus of material configured around the stack support and contacting the upper surface of the lower end cap.
Abstract:
A reactor closure head assembly has guide tube nozzles which are integral with the reactor closure head. A dome-shaped forging having a concave surface is prepared with extra thickness equal to or greater than the desired nozzle height. Nozzles having bores therethrough are machined opposite the concave surface. Weld buttering is applied to the ends of the nozzles, the concave surface is clad with a corrosion resistant layer, and the forging is then heat treated. A guide tube flange is attached to the ends of the nozzles. The surfaces of the nozzle bores are covered with a protective layer which is preferably applied without heating, for example by electrochemical deposition, thereby avoiding the need for subsequent post weld heat treatment.
Abstract:
A control rod for a nuclear reactor has a structure which is capable of suppressing expansion of a reduced-diameter portion of a neutron absorber in a radial direction under shocks applied upon every stepwise driving of a control rod cluster and which can ensure integrity of a cladding tube over an extended period. The control rod includes a cladding tube closed hermetically at both ends thereof by a top end plug and a bottom end plug, respectively, a neutron absorber loaded into the cladding tube and includes a reduced-diameter portion having a smaller diameter than the other portion, the reduced-diameter portion being disposed at the bottom end plug side of the control rod, and a hold-down spring for pressing the neutron absorber downwardly against the bottom end plug. A sleeve is disposed within an annular space defined between an outer peripheral surface of the reduced-diameter portion and an inner peripheral surface of the cladding tube.
Abstract:
A hermaphroditic absorber exploits the inherent spatial change in the neutron spectrum within a lumped poison mass in a thermal reactor neutron flux field. The hermaphroditic absorber (poison mass) incorporates two types of absorbers, the first being a strong thermal absorber near the surface of the mass, and the second being a strong resonant absorber in the interior of the poison mass. The outer regions of the poison mass are comprised of a strong “1/v” thermal absorber, and the inner region of the poison mass is comprised of a resonance absorber. This resonance absorber more appropriately exploits the hardened characteristics of the neutron spectrum within the absorber mass by selectively absorbing the epi-thermal neutrons. The creation of the hermaphroditic poison mass permits an increase in the control material worth while maintaining the external dimension of the structure containing the control material, such as a BWR control rod.