Abstract:
Method and apparatus are provided for re-recording of a frame on magnetic tape (22) when a first recording of the frame is determined to be defective. A frame whose first recording is defective is re-recorded at a spare or reserved location on the tape. The reserved location is dedicated to re-recording of frames, and otherwise cannot have data stored therein. The tape contains a defect map frame (326) which is used to pair physical locations of defective frames with the reserved location whereat the frame is re-recorded. In one embodiment, the reserved location whereat a frame is re-recorded is a reserved physical frame on the same track in which the defective frame is recorded. In another embodiment, the reserved location is on a reserved portion of a track (TG39R) which is not the original track (TG39) upon which the frame is recorded. For embodiments having multi-channel or multi-track frames, the reserved location employs a corresponding plurality of tracks.
Abstract:
A method of recording a digital data signal, such as an audio PCM signal, onto a recording medium in the longitudinal direction thereof, together with an apparatus which is suitable for this recording method. Even-numbered words and odd-numbered words in a digital data signal are recorded on a first track group and a second track group, respectively, which are separated from each other in the widthwise direction of a recording medium, to prevent a series of words becoming error words because of, for example, a flaw in the recording medium in the longitudinal direction thereof. The data format is changed at the input and output of a recording encoder to enable an error correction code and a recording circuit to be used in common for digital tape recorders which have different numbers of tracks, e.g., n tracks and 2n tracks. When an error correction code is recorded in such a manner that one word in the digital data signal is divided into a plurality of symbols which are formed into an error correction code, a plurality of symbols of the same word are recorded at a position at which error correlation is strong, making effective use of the error correction capacity of the error correction code.
Abstract:
A single multi-track head having a plurality of head gaps aligned on a center axis thereof is arranged to assume respectively first and second inclined positions with respect to a transverse axis of a magnetic recording tape. The number of the head gaps equals a half of the total number of tracks to be formed on the tape, and the head gaps are equidistantly spaced so that only odd tracks are formed to record a digital signal when the tape runs in one direction with the multi-track head in one of the first and second inclined positions. When the tape has come to the end, the tape is turned upside down to continuously record the digital signal on even tracks. Before forming the even tracks, the multi-track head is manually or automatically operated to assume the other inclined position. With this operation, the odd and even tracks have different azimuths from each other preventing cross-talk between adjacent tracks. An electrical circuit for detecting which side of the tape is at the top, and a mechanism for rotating the multi-track head either clockwise or counterclockwise may be employed for automatically placing the multi-track head in one of the first and second inclined positions.
Abstract:
An apparatus according to one embodiment includes a module having both read and write transducers positioned towards a media facing side of the module, wherein the read and write transducers are selected from a group consisting of piggyback read-write transducers, merged read-write transducers, interleaved read and write transducers, and an array of write transducers. The write transducers include write poles having media facing sides with negative, zero or near-zero recession from a plane extending along the media facing side of a substrate of the module. The read transducers each have at least one shield. A media facing side of the at least one shield is more recessed from the plane than the write poles.
Abstract:
A control system for a tape drive that uses position error signals (PESs) generated by a tape head assembly of the tape drive during longitudinal movement of a tape through the drive to dynamically adjust a lateral and/or angular position of tape to enhance tape drive performance (e.g., the ability of a tape head assembly to precisely follow one or more data and/or servo tracks on the tape). In one arrangement, the PESs and/or PES metrics are used as feedback into the system to steer the tape by moving one or more tape path guides until subsequently generated PESs or PES metrics have been optimized or have at least moved back into an acceptable range or to acceptable levels. The disclosed control system facilitates achieving increased stringencies on PES minimization that come with increased tape drive magnetic track densities.
Abstract:
A method according to one embodiment includes setting a default friction value to a predetermined value, determining whether a primary velocity is valid, determining a velocity error, determining whether the velocity error is in a predetermined range, accumulating the velocity error when the velocity error is determined to be in the predetermined range, repeating, until a time period has elapsed, each of: the determining the velocity error, the determining whether the velocity error is in the predetermined range, and the accumulating the velocity error when the velocity error is determined to be in the predetermined range, and calculating a new friction value based on the accumulated velocity error.
Abstract:
In one embodiment, a data storage system includes a head; a drive mechanism for passing a medium over the head; a controller electrically coupled to the head; logic encoded in or available to the controller for: periodically determining a stopwrite threshold based on a standard deviation or a variance at a current position error signal sample, wherein a smoothing factor applied to a subsequent calculation of the standard deviation or variance is altered based at least in part on a current magnitude of the standard deviation or the variance; determining whether the current position error signal sample exceeds the stopwrite threshold; disabling writing when the current position error signal sample exceeds the stopwrite threshold; and enabling writing when the current position error signal sample does not exceed the stopwrite threshold. Other systems, methods, and computer program products are described according to more embodiments.
Abstract:
A method for randomizing data to mitigate false VFO detection is described. In one embodiment, such a method includes simultaneously receiving multiple input data streams. Each input data stream is associated with a different track on a magnetic tape medium. The input data streams are simultaneously scrambled to produce multiple randomized data streams. The input data streams are scrambled such that different bit patterns are produced in the randomized data streams even where corresponding bit patterns in the input data streams are identical. The randomized data streams are simultaneously written to their associated data tracks on the magnetic tape medium.
Abstract:
A method for randomizing data to mitigate false VFO detection is described. In one embodiment, such a method includes simultaneously receiving multiple input data streams. Each input data stream is associated with a different track on a magnetic tape medium. The input data streams are simultaneously scrambled to produce multiple randomized data streams. The input data streams are scrambled such that different bit patterns are produced in the randomized data streams even where corresponding bit patterns in the input data streams are identical. The randomized data streams are simultaneously written to their associated data tracks on the magnetic tape medium. A corresponding apparatus is also described.